7 research outputs found

    Aquaporins in the wild : natural genetic diversity and selective pressure in the PIP gene family in five Neotropical tree species

    No full text
    Background: Tropical trees undergo severe stress through seasonal drought and flooding, and the ability of these species to respond may be a major factor in their survival in tropical ecosystems, particularly in relation to global climate change. Aquaporins are involved in the regulation of water flow and have been shown to be involved in drought response; they may therefore play a major adaptive role in these species. We describe genetic diversity in the PIP sub-family of the widespread gene family of Aquaporins in five Neotropical tree species covering four botanical families. Results: PIP Aquaporin subfamily genes were isolated, and their DNA sequence polymorphisms characterised in natural populations. Sequence data were analysed with statistical tests of standard neutral equilibrium and demographic scenarios simulated to compare with the observed results. Chloroplast SSRs were also used to test demographic transitions. Most gene fragments are highly polymorphic and display signatures of balancing selection or bottlenecks; chloroplast SSR markers have significant statistics that do not conform to expectations for population bottlenecks. Although not incompatible with a purely demographic scenario, the combination of all tests tends to favour a selective interpretation of extant gene diversity. Conclusions: Tropical tree PIP genes may generally undergo balancing selection, which may maintain high levels of genetic diversity at these loci. Genetic variation at PIP genes may represent a response to variable environmental conditions

    Forest tree genomics: 10 achievements from the past 10 years and future prospects

    Get PDF
    This review highlights some of the discoveries and applications made possible by “omics” technologies over the last 10 years and provides perspectives for pioneering research to increase our understanding of tree biology.ContextA decade after the first forest tree genome sequence was released into the public domain, the rapidly evolving genomics and bioinformatics toolbox has advanced our understanding of the structure, functioning, and evolution of forest tree genomes.Aims and methodsThis review highlights some of the discoveries and applications that “omics” technologies have made possible for forest trees over the past 10 years.ResultsIn this review, we start by our current understanding of genome evolution and intricacies of gene regulation for reproduction, development, and responses to biotic and abiotic stresses. We then skim over advances in interactome analysis and epigenomics, the knowledge of the extent of genetic variation within and between species, revealing micro- and macro-evolutionary processes and species history, together with the complex architecture of quantitative traits. We finally end with applications in genetic resource conservation and breeding.ConclusionThe knowledge gained through the use of these technologies has a huge potential impact for adapting forests to the main challenges they will have to face: changing demand from ecosystem services with potentially conflicting strategies in terms of conservation and use, as well as climate changes and associated threats. Genomics will undoubtedly play a major role over the next decade and beyond, not only to further understand the mechanisms underlying adaptation and evolution but also to develop and implement innovative management and policy actions to preserve the adaptability of natural forests and intensively managed plantations
    corecore