1,225 research outputs found
Optical Morphology Evolution of Infrared Luminous Galaxies in GOODS-N
We combine optical morphologies and photometry from HST, redshifts from Keck,
and mid-infrared luminosities from Spitzer for an optically selected sample
of~800 galaxies in GOODS-N to track morphology evolution of infrared luminous
galaxies (LIRGs) since redshift z=1. We find a 50% decline in the number of
LIRGs from z~1 to lower redshift, in agreement with previous studies. In
addition, there is evidence for a morphological evolution of the populations of
LIRGs. Above z=0.5, roughly half of all LIRGs are spiral, the
peculiar/irregular to spiral ratio is ~0.7, and both classes span a similar
range of L_{IR} and M_B. At low-z, spirals account for one-third of LIRGs, the
peculiar to spiral fraction rises to 1.3, and for a given M_B spirals tend to
have lower IR luminosity than peculiars. Only a few percent of LIRGs at any
redshift are red early-type galaxies. For blue galaxies (U-B < 0.2), M_B is
well correlated with log(L_{IR}) with an RMS scatter (about a bivariate linear
fit) of ~0.25 dex in IR luminosity. Among blue galaxies that are brighter than
M_B = -21, 75% are LIRGs, regardless of redshift. These results can be
explained by a scenario in which at high-z, most large spirals experience an
elevated star formation rate as LIRGs. Gas consumption results in a decline of
LIRGs, especially in spirals, to lower redshifts.Comment: 6 pages, 2 figures, accepted ApJ
Mid-infrared and optical spectroscopy of ultraluminous infrared galaxies: A comparison
New tools from Infrared Space Observatory (ISO) mid-infrared spectroscopy
have recently become available to determine the power sources of dust-obscured
ultraluminous infrared galaxies (ULIRGs). We compare ISO classifications -
starburst or active galactic nucleus (AGN) - with classifications from optical
spectroscopy, and with optical/near-infrared searches for hidden broad-line
regions. The agreement between mid-infrared and optical classification is
excellent if optical LINER spectra are assigned to the starburst group. The
starburst nature of ULIRG LINERs strongly supports the suggestion that LINER
spectra in infrared-selected galaxies, rather than being an expression of the
AGN phenomenon, are due to shocks that are probably related to galactic
superwinds. Differences between ISO and optical classification provide clues on
the evolution of ULIRGs and on the configuration of obscuring dust. We find few
ISO AGN with optical HII or LINER identification, suggesting that highly
obscured AGN exist but are not typical for the ULIRG phenomenon in general.
Rather, our results indicate that strong AGN activity, once triggered, quickly
breaks the obscuring screen at least in certain directions, thus becoming
detectable over a wide wavelength range.Comment: aastex, 1 eps figure. Accepted by ApJ (Letters
NGC6240: extended CO structures and their association with shocked gas
We present deep CO observations of NGC6240 performed with the IRAM Plateau de
Bure Interferometer (PdBI). NGC6240 is the prototypical example of a major
galaxy merger in progress, caught at an early stage, with an extended,
strongly-disturbed butterfly-like morphology and the presence of a heavily
obscured active nucleus in the core of each progenitor galaxy. The CO line
shows a skewed profile with very broad and asymmetric wings detected out to
velocities of -600 km/s and +800 km/s with respect to the systemic velocity.
The PdBI maps reveal the existence of two prominent structures of blueshifted
CO emission. One extends eastward, i.e. approximately perpendicular to the line
connecting the galactic nuclei, over scales of ~7 kpc and shows velocities up
to -400 km/s. The other extends southwestward out to ~7 kpc from the nuclear
region, and has a velocity of -100 km/s with respect to the systemic one.
Interestingly, redshifted emission with velocities 400 to 800 km/s is detected
around the two nuclei, extending in the east-west direction, and partly
overlapping with the eastern blue-shifted structure, although tracing a more
compact region of size ~1.7 kpc. The overlap between the southwestern CO blob
and the dust lanes seen in HST images, which are interpreted as tidal tails,
indicates that the molecular gas is deeply affected by galaxy interactions. The
eastern blueshifted CO emission is co-spatial with an Halpha filament that is
associated with strong H2 and soft X-ray emission. The analysis of Chandra
X-ray data provides strong evidence for shocked gas at the position of the
Halpha emission. Its association with outflowing molecular gas supports a
scenario where the molecular gas is compressed into a shock wave that
propagates eastward from the nuclei. If this is an outflow, the AGN are likely
the driving force.Comment: Accepted for publication in A&
Dusty Starbursts and the Growth of Cosmic Structure
Dusty starbursts were more numerous around z~1 than today and appear to be
responsible for the majority of cosmic star formation over the Hubble time. We
suggest that they represent a common phase within galaxies in general which is
triggered by the growth of cosmic structure. We discuss the origin of the
luminosity of luminous infrared galaxies at z~1. Are these galaxies dominated
by star formation or nuclear activity ? What is triggering their strong
activity ? Is it triggered by external interactions or did it happen naturally
within isolated galaxies ? We present HST-ACS high resolution optical images of
luminous infrared galaxies at z~0.7 showing the evolution of the morphology of
these galaxies as a function of infrared luminosity, or star formation rate,
and discuss the effect of the environment on their activity.Comment: 4 pages, 2 figures, to appear in Proceeding of the "Multi-Wavelength
Cosmology" Conference held in Mykonos, Greece, June 2003, ed.M. Plionis
(Kluwer
A Far-infrared Characterization of 24 μm Selected Galaxies at 0 < z < 2.5 using Stacking at 70 μm and 160 μm in the COSMOS Field
We present a study of the average properties of luminous infrared galaxies detected directly at 24 μm in the COSMOS field using a median stacking analysis at 70 μm and 160 μm. Over 35,000 sources spanning 0 ≤ z ≤ 3 and 0.06 mJy ≤ S_(24) ≤ 3.0 mJy are stacked, divided into bins of both photometric redshift and 24 μm flux. We find no correlation of S_(70)/S_(24) flux density ratio with S_(24), but find that galaxies with higher S_(24) have a lower S_(160)/S_(24) flux density ratio. These observed ratios suggest that 24 μm selected galaxies have warmer spectral energy distributions (SEDs) at higher mid-IR fluxes, and therefore have a possible higher fraction of active galactic nuclei. Comparisons of the average S_(70)/S_(24) and S_(160)/S_(24) colors with various empirical templates and theoretical models show that the galaxies detected at 24 μm are consistent with "normal" star-forming galaxies and warm mid-IR galaxies such as Mrk 231, but inconsistent with heavily obscured galaxies such as Arp 220. We perform a χ^2 analysis to determine best-fit galactic model SEDs and total IR luminosities for each of our bins. We compare our results to previous methods of estimating L IR and find that previous methods show considerable agreement over the full redshift range, except for the brightest S_(24) sources, where they overpredict the bolometric IR luminosity at high redshift, most likely due to their warmer dust SED. We present a table that can be used as a more accurate and robust method for estimating bolometric infrared luminosity from 24 μm flux densities
Characterizations of Super-regularity and its Variants
Convergence of projection-based methods for nonconvex set feasibility
problems has been established for sets with ever weaker regularity assumptions.
What has not kept pace with these developments is analogous results for
convergence of optimization problems with correspondingly weak assumptions on
the value functions. Indeed, one of the earliest classes of nonconvex sets for
which convergence results were obtainable, the class of so-called super-regular
sets introduced by Lewis, Luke and Malick (2009), has no functional
counterpart. In this work, we amend this gap in the theory by establishing the
equivalence between a property slightly stronger than super-regularity, which
we call Clarke super-regularity, and subsmootheness of sets as introduced by
Aussel, Daniilidis and Thibault (2004). The bridge to functions shows that
approximately convex functions studied by Ngai, Luc and Th\'era (2000) are
those which have Clarke super-regular epigraphs. Further classes of regularity
of functions based on the corresponding regularity of their epigraph are also
discussed.Comment: 15 pages, 2 figure
ISO investigates the nature of extremely-red hard X-ray sources responsible for the X-ray background
We analyse very deep X-ray and mid-IR surveys in common areas of the Lockman
Hole and the HDF North to study the sources of the X-ray background (XRB) and
to test the standard obscured accretion paradigm. We detect with ISO a rich
population of X-ray luminous sources with red optical colours, including a
fraction identified with Extremely Red Objects (R-K > 5) and galaxies with SEDs
typical of normal massive ellipticals or spirals at z ~ 1. The high 0.5-10 keV
X-ray luminosities of these objects (1E43-1E45 erg/s) indicate that the
ultimate energy source is gravitational accretion, while the X-ray to IR flux
ratios and the X-ray spectral hardness show evidence of photoelectric
absorption at low X-ray energies. An important hint on the physics comes from
the mid-IR data at 6.7 and 15 um, well reproduced by model spectra of
completely obscured quasars under standard assumptions and l.o.s. optical
depths tau ~ 30-40. Other predictions of the standard XRB picture, like the
distributions of intrinsic bolometric luminosities and the relative fractions
of type-I and -II objects (1:3), are also consistent with our results. Obscured
gravitational accretion is then confirmed as being responsible for the bulk of
the X-ray background, since we detect in the IR the down-graded energy
photoelectrically absorbed in X-rays: 63% of the faint 5-10 keV XMM sources are
detected in the mid-IR by Fadda et al. (2001). However, although as much as 90%
of the X-ray energy production could be converted to IR photons, no more than
20% of the Cosmic IR Background can be attributed to X-ray loud AGNs.Comment: 7 pages, 5 postscript figures, ApJ submitte
Multi-wavelength Observations of Dusty Star Formation at Low and High Redshift
This paper examines what can be learned about high-redshift star formation
from the small fraction of high-redshift galaxies' luminosities that is emitted
at accessible wavelengths. We review and quantify empirical correlations
between bolometric luminosities produced by star formation and the UV, mid-IR,
sub-mm, and radio luminosities of galaxies in the local universe. These
correlations suggest that observations of high-redshift galaxies at any of
these wavelengths should constrain their star-formation rates to within
0.2--0.3 dex. We assemble the limited evidence that high-redshift galaxies obey
these locally calibrated correlations. The characteristic luminosities and dust
obscurations of galaxies at z ~ 0, z ~ 1, and z ~ 3 are reviewed. After
discussing the relationship between the high-redshift populations selected in
surveys at different wavelengths, we calculate the contribution to the 850um
background from each. The available data show that a correlation between
star-formation rate and dust obscuration L_dust/L_UV exists at low and high
redshift. This correlation plays a central role in the major conclusion of this
paper: most star formation at high redshift occurred in galaxies with 1 <
L_dust/L_UV < 100 similar to those that host the majority of star formation in
the local universe and to those that are detected in UV-selected surveys.
(abridged)Comment: Scheduled for publication in ApJ v544 Dec 2000. Significant changes
to section 4. Characteristic UV and dust luminosities of star-forming
galaxies at redshifts z~0, z~1, and z~3 presented. Existence of extremely
obscured galaxies more clearly acknowledged. Original conclusions reinforced
by the observed correlation between bolometric luminosity and dust
obscuration at 0<z<
- …
