7,202 research outputs found

    Phase behavior of a fluid with competing attractive and repulsive interactions

    Get PDF
    Fluids in which the interparticle potential has a hard core, is attractive at moderate separations, and repulsive at greater separations are known to exhibit novel phase behavior, including stable inhomogeneous phases. Here we report a joint simulation and theoretical study of such a fluid, focusing on the relationship between the liquid-vapor transition line and any new phases. The phase diagram is studied as a function of the amplitude of the attraction for a certain fixed amplitude of the long ranged repulsion. We find that the effect of the repulsion is to substitute the liquid-vapor critical point and a portion of the associated liquid-vapor transition line, by two first order transitions. One of these transitions separates the vapor from a fluid of spherical liquidlike clusters; the other separates the liquid from a fluid of spherical voids. At low temperature, the two transition lines intersect one another and a vapor-liquid transition line at a triple point. While most integral equation theories are unable to describe the new phase transitions, the Percus Yevick approximation does succeed in capturing the vapor-cluster transition, as well as aspects of the structure of the cluster fluid, in reasonable agreement with the simulation results.Comment: 15 pages, 20 figure

    Derivation of the nonlinear fluctuating hydrodynamic equation from underdamped Langevin equation

    Full text link
    We derive the fluctuating hydrodynamic equation for the number and momentum densities exactly from the underdamped Langevin equation. This derivation is an extension of the Kawasaki-Dean formula in underdamped case. The steady state probability distribution of the number and momentum densities field can be expressed by the kinetic and potential energies. In the massless limit, the obtained fluctuating hydrodynamic equation reduces to the Kawasaki-Dean equation. Moreover, the derived equation corresponds to the field equation derived from the canonical equation when the friction coefficient is zero.Comment: 16 page

    Collective shuttling of attracting particles in asymmetric narrow channels

    Get PDF
    The rectification of a single file of attracting particles subjected to a low frequency ac drive is proposed as a working mechanism for particle shuttling in an asymmetric narrow channel. Increasing the particle attraction results in the file condensing, as signalled by the dramatic enhancement of the net particle current. Magnitude and direction of the current become extremely sensitive to the actual size of the condensate, which can then be made to shuttle between two docking stations, transporting particles in one direction, with an efficiency much larger than conventional diffusive models predict

    Augmented collisional ionization via excited states in XUV cluster interactions

    Full text link
    The impact of atomic excited states is investigated via a detailed model of laser-cluster interactions, which is applied to rare gas clusters in intense femtosecond pulses in the extreme ultraviolet (XUV). This demonstrates the potential for a two-step ionization process in laser-cluster interactions, with the resulting intermediate excited states allowing for the creation of high charge states and the rapid dissemination of laser pulse energy. The consequences of this excitation mechanism are demonstrated through simulations of recent experiments in argon clusters interacting with XUV radiation, in which this two-step process is shown to play a primary role; this is consistent with our hypothesis that XUV-cluster interactions provide a unique window into the role of excited atomic states due to the relative lack of photoionization and laser field-driven phenomena. Our analysis suggests that atomic excited states may play an important role in interactions of intense radiation with materials in a variety of wavelength regimes, including potential implications for proposed studies of single molecule imaging with intense X-rays.Comment: 4 pages, 2 figure

    Nanophase Carbonates on Mars: Formation, Detection, and Implications

    Get PDF
    Despite having an atmosphere composed primarily of CO2 and evidence for abundant water in the past, carbonate minerals have only been discovered on Mars in small amounts in martian dust, in soils in the Northern Plains, and in outcrops of limited spatial extent. Recently, carbonates have been identified as the possible source of CO2 released during thermal analysis of material from an aeolian deposit named Rocknest and drilled sample from the sheepbed mudstone, both samples analyzed by the Mars Science Laboratory (MSL) in Gale Crater. Both the Phoenix lander and MSL carry thermal analysis instruments, the Thermal and Evolved Gas Analyzer (TEGA) on Phoenix and the Sample Analysis at Mars (SAM) instrument on MSL. While thermal analysis does not provide definitive mineralogy, it can detect volatile-bearing minerals present at very low abundance and the temperature profiles of evolved gases can reveal physical properties of the sample. For example, the decomposition temperature of volatilebearing minerals depends heavily on the particle size of the mineral

    Exceptionally strong magnetism in 4d perovskites RTcO3 (R=Ca,Sr,Ba)

    Full text link
    The evolution of the magnetic ordering temperature of the 4d3 perovskites RTcO3 (R=Ca,Sr,Ba) and its relation with its electronic and structural properties has been studied by means of hybrid density functional theory and Monte Carlo simulations. When compared to the most widely studied 3d perovskites the large spatial extent of the 4d shells and their relatively strong hybridization with oxygen weaken the tendency to form Jahn-Teller like orbital ordering. This strengthens the superexchange interaction. The resulting insulating G-type antiferromagnetic ground state is characterized by large superexchange coupling constants (26-35 meV) and Neel temperatures (750-1200 K). These monotonically increase as a function of the R ionic radius due to the progressive enhancement of the volume and the associated decrease of the cooperative rotation of the TcO6 octahedra.Comment: 4 pages, 3 figure

    Atomic self-interaction correction for molecules and solids

    Full text link
    We present an atomic orbital based approximate scheme for self-interaction correction (SIC) to the local density approximation of density functional theory. The method, based on the idea of Filippetti and Spaldin [Phys. Rev. B 67, 125109 (2003)], is implemented in a code using localized numerical atomic orbital basis sets and is now suitable for both molecules and extended solids. After deriving the fundamental equations as a non-variational approximation of the self-consistent SIC theory, we present results for a wide range of molecules and insulators. In particular, we investigate the effect of re-scaling the self-interaction correction and we establish a link with the existing atomic-like corrective scheme LDA+U. We find that when no re-scaling is applied, i.e. when we consider the entire atomic correction, the Kohn-Sham HOMO eigenvalue is a rather good approximation to the experimental ionization potential for molecules. Similarly the HOMO eigenvalues of negatively charged molecules reproduce closely the molecular affinities. In contrast a re-scaling of about 50% is necessary to reproduce insulator bandgaps in solids, which otherwise are largely overestimated. The method therefore represents a Kohn-Sham based single-particle theory and offers good prospects for applications where the actual position of the Kohn-Sham eigenvalues is important, such as quantum transport.Comment: 16 pages, 7 figure

    WRF-Chem model predictions of the regional impacts of N2O5 heterogeneous processes on night-time chemistry over north-western Europe

    Get PDF
    Abstract. Chemical modelling studies have been conducted over north-western Europe in summer conditions, showing that night-time dinitrogen pentoxide (N2O5) heterogeneous reactive uptake is important regionally in modulating particulate nitrate and has a~modest influence on oxidative chemistry. Results from Weather Research and Forecasting model with Chemistry (WRF-Chem) model simulations, run with a detailed volatile organic compound (VOC) gas-phase chemistry scheme and the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) sectional aerosol scheme, were compared with a series of airborne gas and particulate measurements made over the UK in July 2010. Modelled mixing ratios of key gas-phase species were reasonably accurate (correlations with measurements of 0.7–0.9 for NO2 and O3). However modelled loadings of particulate species were less accurate (correlation with measurements for particulate sulfate and ammonium were between 0.0 and 0.6). Sulfate mass loadings were particularly low (modelled means of 0.5–0.7 μg kg−1air, compared with measurements of 1.0–1.5 μg kg−1air). Two flights from the campaign were used as test cases – one with low relative humidity (RH) (60–70%), the other with high RH (80–90%). N2O5 heterogeneous chemistry was found to not be important in the low-RH test case; but in the high-RH test case it had a strong effect and significantly improved the agreement between modelled and measured NO3 and N2O5. When the model failed to capture atmospheric RH correctly, the modelled NO3 and N2O5 mixing ratios for these flights differed significantly from the measurements. This demonstrates that, for regional modelling which involves heterogeneous processes, it is essential to capture the ambient temperature and water vapour profiles. The night-time NO3 oxidation of VOCs across the whole region was found to be 100–300 times slower than the daytime OH oxidation of these compounds. The difference in contribution was less for alkenes (× 80) and comparable for dimethylsulfide (DMS). However the suppression of NO3 mixing ratios across the domain by N2O5 heterogeneous chemistry has only a very slight, negative, influence on this oxidative capacity. The influence on regional particulate nitrate mass loadings is stronger. Night-time N2O5 heterogeneous chemistry maintains the production of particulate nitrate within polluted regions: when this process is taken into consideration, the daytime peak (for the 95th percentile) of PM10 nitrate mass loadings remains around 5.6 μg kg−1air, but the night-time minimum increases from 3.5 to 4.6 μg kg−1air. The sustaining of higher particulate mass loadings through the night by this process improves model skill at matching measured aerosol nitrate diurnal cycles and will negatively impact on regional air quality, requiring this process to be included in regional models. </jats:p

    Organic Combustion in the Presence of Ca-Carbonate and Mg-Perchlorate: A Possible Source for the Low Temperature CO2 Release Seen in Mars Phoenix Thermal and Evolved Gas Analyzer Data

    Get PDF
    Two of the most important discoveries of the Phoenix Lander were the detection of approx.0.6% perchlorate [1] and 3-5% carbonate [2] in landing site soils. The Thermal and Evolved Gas Analyzer (TEGA) instrument on the Phoenix lander could heat samples up to approx.1000 C and monitor evolved gases with a mass spectrometer. TEGA detected a low (approx.350 C) and high (approx.750 C) temperature CO2 release. The high temp release was attributed to the thermal decomposition of Ca-carbonate (calcite). The low temperature CO2 release could be due to desorption of CO2, decomposition of a different carbonate mineral, or the combustion of organic material. A new hypothesis has also been proposed that the low temperature CO2 release could be due to the early breakdown of calcite in the presence of the decomposition products of certain perchlorate salts [3]. We have investigated whether or not this new hypothesis is also compatible with organic combustion. Magnesium perchlorate is stable as Mg(ClO4)2-6H2O on the martian surface [4]. During thermal decomposition, this perchlorate salt releases H2O, Cl2, and O2 gases. The Cl2 can react with water to form HCl which then reacts with calcite, releasing CO2 below the standard thermal decomposition temperature of calcite. However, when using concentrations of perchlorate and calcite similar to what was detected by Phoenix, the ratio of high:low temperature CO2 evolved is much larger in the lab, indicating that although this process might contribute to the low temp CO2 release, it cannot account for all of it. While H2O and Cl2 cause calcite decomposition, the O2 evolved during perchlorate decomposition can lead to the combustion of any reduced carbon present in the sample [5]. We investigate the possible contribution of organic molecules to the low temperature CO2 release seen on Mars

    Investigations Using Laboratory Testbeds to Interpret Flight Instrument Datasets from Mars Robotic Missions

    Get PDF
    The Astromaterials Research and Exploration Science Directorate at the NASA Johnson Space Center (JSC) has laboratory instrumentation that mimic the capabilities of corresponding flight instruments to enable interpretation of datasets returned from Mars robotic missions. The lab instruments have been and continue to be applied to datasets for the Moessbauer Spectrometer (MB) on the Mars Exploration Rovers (MER), the Thermal & Evolved Gas Analyzer (TEGA) on the Mars Phoenix Scout, the CRISM instrument on the Mars Reconnaissance Orbiter Missions and will be applied to datasets for the Sample Analysis at Mars (SAM), Chemistry and Mineralogy (CheMin) and Chemistry & Camera (ChemCam) instruments onboard the Mars Science Laboratory (MSL). The laboratory instruments can analyze analog samples at costs that are substantially lower than engineering models of flight instruments, but their success to enable interpretation of flight data depends on how closely their capabilities mimic those of the flight instrument. The JSC lab MB instruments are equivalent to the MER instruments except without flight qualified components and no reference channel Co-57 source. Data from analog samples were critical for identification of Mg-Fe carbonate at Gusev crater. Fiber-optic VNIR spectrometers are used to obtain CRISM-like spectral data over the range 350-2500 nm, and data for Fephyllosilicates show irreversible behavior in the electronic transition region upon dessication. The MB and VNIR instruments can be operated within chambers where, for example, the absolute H2O concentration can be measured and controlled. Phoenix's TEGA consisted of a calorimeter coupled to a mass spectrometer (MS). The JSC laboratory testbed instrument consisted of a differential scanning calorimeter (DSC) coupled to a MS configured to operate under total pressure (12 mbar), heating rate (20 C/min), and purge gas composition (N2) analogous to the flight TEGA. TEGA detected CO2 release at both low (400-680 C) and high (725-820 C) temperature and an endothermic reaction in concert with the high temperature release. The high-temperature thermal decomposition is consistent with calcite, dolomite, or ankerite, (3-6 wt.%) or any combination of these phase based upon laboratory testbed experiments. Recent laboratory experiments suggest that the low temperature CO2 release was caused by a reaction between calcium carbonate and hydrated magnesium perchlorate; although, CO2 release by the oxidation of organic materials and Fe-/Mg-rich carbonates cannot be ruled out. MSL landed in Gale crater on August 5, 2012. Although numerous analog samples have been analyzed on the JSC laboratory testbeds, no SAM, CheMin, or ChemCam analyses have been acquired by MSL to date. The JSC SAM laboratory testbed consists of a thermal analyzer coupled with a MS configured to operate under total pressure (30 mbar), heating rate (35 C/min), and purge gas composition (He) analogous to the flight SAM. The CheMin and ChemCam laboratory testbeds were developed and built by inXitu, Inc. and Los Alamos National Laboratory, respectively, to acquire datasets relevant to the MSL CheMin and ChemCam flight instruments
    corecore