34,324 research outputs found
Substructure Discovery Using Minimum Description Length and Background Knowledge
The ability to identify interesting and repetitive substructures is an
essential component to discovering knowledge in structural data. We describe a
new version of our SUBDUE substructure discovery system based on the minimum
description length principle. The SUBDUE system discovers substructures that
compress the original data and represent structural concepts in the data. By
replacing previously-discovered substructures in the data, multiple passes of
SUBDUE produce a hierarchical description of the structural regularities in the
data. SUBDUE uses a computationally-bounded inexact graph match that identifies
similar, but not identical, instances of a substructure and finds an
approximate measure of closeness of two substructures when under computational
constraints. In addition to the minimum description length principle, other
background knowledge can be used by SUBDUE to guide the search towards more
appropriate substructures. Experiments in a variety of domains demonstrate
SUBDUE's ability to find substructures capable of compressing the original data
and to discover structural concepts important to the domain. Description of
Online Appendix: This is a compressed tar file containing the SUBDUE discovery
system, written in C. The program accepts as input databases represented in
graph form, and will output discovered substructures with their corresponding
value.Comment: See http://www.jair.org/ for an online appendix and other files
accompanying this articl
Beetle fauna of the island of Tobago, Trinidad and Tobago, West Indies
Tobago is a biologically rich but poorly investigated island. In this paper we report the occurrence of 672 species of beetles representing 69 families. Of these, only 95 had been previously reported from the island
Gravitational waves from nonspinning black hole-neutron star binaries: dependence on equations of state
We report results of a numerical-relativity simulation for the merger of a
black hole-neutron star binary with a variety of equations of state (EOSs)
modeled by piecewise polytropes. We focus in particular on the dependence of
the gravitational waveform at the merger stage on the EOSs. The initial
conditions are computed in the moving-puncture framework, assuming that the
black hole is nonspinning and the neutron star has an irrotational velocity
field. For a small mass ratio of the binaries (e.g., MBH/MNS = 2 where MBH and
MNS are the masses of the black hole and neutron star, respectively), the
neutron star is tidally disrupted before it is swallowed by the black hole
irrespective of the EOS. Especially for less-compact neutron stars, the tidal
disruption occurs at a more distant orbit. The tidal disruption is reflected in
a cutoff frequency of the gravitational-wave spectrum, above which the spectrum
amplitude exponentially decreases. A clear relation is found between the cutoff
frequency of the gravitational-wave spectrum and the compactness of the neutron
star. This relation also depends weakly on the stiffness of the EOS in the core
region of the neutron star, suggesting that not only the compactness but also
the EOS at high density is reflected in gravitational waveforms. The mass of
the disk formed after the merger shows a similar correlation with the EOS,
whereas the spin of the remnant black hole depends primarily on the mass ratio
of the binary, and only weakly on the EOS. Properties of the remnant disks are
also analyzed.Comment: 27pages, 21 figures; erratum is added on Aug 5. 201
Measuring eccentricity in binary black-hole initial data
Initial data for evolving black-hole binaries can be constructed via many
techniques, and can represent a wide range of physical scenarios. However,
because of the way that different schemes parameterize the physical aspects of
a configuration, it is not alway clear what a given set of initial data
actually represents. This is especially important for quasiequilibrium data
constructed using the conformal thin-sandwich approach. Most initial-data
studies have focused on identifying data sets that represent binaries in
quasi-circular orbits. In this paper, we consider initial-data sets
representing equal-mass black holes binaries in eccentric orbits. We will show
that effective-potential techniques can be used to calibrate initial data for
black-hole binaries in eccentric orbits. We will also examine several different
approaches, including post-Newtonian diagnostics, for measuring the
eccentricity of an orbit. Finally, we propose the use of the ``Komar-mass
difference'' as a useful, invariant means of parameterizing the eccentricity of
relativistic orbits.Comment: 12 pages, 11 figures, submitted to Physical Review D, revtex
Fragmentation of Nuclei at Intermediate and High Energies in Modified Cascade Model
The process of nuclear multifragmentation has been implemented, together with
evaporation and fission channels of the disintegration of excited remnants in
nucleus-nucleus collisions using percolation theory and the intranuclear
cascade model. Colliding nuclei are treated as face--centered--cubic lattices
with nucleons occupying the nodes of the lattice. The site--bond percolation
model is used. The code can be applied for calculation of the fragmentation of
nuclei in spallation and multifragmentation reactions.Comment: 19 pages, 10 figure
Ranking Templates for Linear Loops
We present a new method for the constraint-based synthesis of termination
arguments for linear loop programs based on linear ranking templates. Linear
ranking templates are parametrized, well-founded relations such that an
assignment to the parameters gives rise to a ranking function. This approach
generalizes existing methods and enables us to use templates for many different
ranking functions with affine-linear components. We discuss templates for
multiphase, piecewise, and lexicographic ranking functions. Because these
ranking templates require both strict and non-strict inequalities, we use
Motzkin's Transposition Theorem instead of Farkas Lemma to transform the
generated -constraint into an -constraint.Comment: TACAS 201
Megawatt solar power systems for lunar surface operations
The work presented here shows that a solar power system can provide power on the order of one megawatt to a lunar base with a fairly high specific power. The main drawback to using solar power is still the high mass, and therefore, cost of supplying energy storage through the solar night. The use of cryogenic reactant storage in a fuel cell system, however, greatly reduces the total system mass over conventional energy storage schemes
Collisions of boosted black holes: perturbation theory prediction of gravitational radiation
We consider general relativistic Cauchy data representing two nonspinning,
equal-mass black holes boosted toward each other. When the black holes are
close enough to each other and their momentum is sufficiently high, an
encompassing apparent horizon is present so the system can be viewed as a
single, perturbed black hole. We employ gauge-invariant perturbation theory,
and integrate the Zerilli equation to analyze these time-asymmetric data sets
and compute gravitational wave forms and emitted energies. When coupled with a
simple Newtonian analysis of the infall trajectory, we find striking agreement
between the perturbation calculation of emitted energies and the results of
fully general relativistic numerical simulations of time-symmetric initial
data.Comment: 5 pages (RevTex 3.0 with 3 uuencoded figures), CRSR-107
Discreteness and entropic fluctuations in GREM-like systems
Within generalized random energy models, we study the effects of energy
discreteness and of entropy extensivity in the low temperature phase. At zero
temperature, discreteness of the energy induces replica symmetry breaking, in
contrast to the continuous case where the ground state is unique. However, when
the ground state energy has an extensive entropy, the distribution of overlaps
P(q) instead tends towards a single delta function in the large volume limit.
Considering now the whole frozen phase, we find that P(q) varies continuously
with temperature, and that state-to-state fluctuations of entropy wash out the
differences between the discrete and continuous energy models.Comment: 7 pages, 3 figure, 2 figures are added, the volume changes from 4
pages to 7 page
- …
