8,664 research outputs found

    Hadronization in heavy ion collisions: Recombination and fragmentation of partons

    Full text link
    We argue that the emission of hadrons with transverse momentum up to about 5 GeV/c in central relativistic heavy ion collisions is dominated by recombination, rather than fragmentation of partons. This mechanism provides a natural explanation for the observed constant baryon-to-meson ratio of about one and the apparent lack of a nuclear suppression of the baryon yield in this momentum range. Fragmentation becomes dominant at higher transverse momentum, but the transition point is delayed by the energy loss of fast partons in dense matter.Comment: 4 pages, 2 figures; v2: reference [8] added; v3: Eq.(2) corrected, two references added, version to appear in PR

    Application of density dependent parametrization models to asymmetric nuclear matter

    Full text link
    Density dependent parametrization models of the nucleon-meson effective couplings, including the isovector scalar \delta-field, are applied to asymmetric nuclear matter. The nuclear equation of state and the neutron star properties are studied in an effective Lagrangian density approach, using the relativistic mean field hadron theory. It is known that the introduction of a \delta-meson in the constant coupling scheme leads to an increase of the symmetry energy at high density and so to larger neutron star masses, in a pure nucleon-lepton scheme. We use here a more microscopic density dependent model of the nucleon-meson couplings to study the properties of neutron star matter and to re-examine the \delta-field effects in asymmetric nuclear matter. Our calculations show that, due to the increase of the effective \delta coupling at high density, with density dependent couplings the neutron star masses in fact can be even reduced.Comment: 5 pages, 4 figure

    Symmetry Energy Effects on the Mixed Hadron-Quark Phase at High Baryon Density

    Full text link
    The phase transition of hadronic to quark matter at high baryon and isospin density is analyzed. Relativistic mean field models are used to describe hadronic matter, and the MIT bag model is adopted for quark matter. The boundaries of the mixed phase and the related critical points for symmetric and asymmetric matter are obtained. Due to the different symmetry term in the two phases, isospin effects appear to be rather significant. With increasing isospin asymmetry the binodal transition line of the (T,\rho_B) diagram is lowered to a region accessible through heavy ion collisions in the energy range of the new planned facilities, e.g. the FAIR/NICA projects. Some observable effects are suggested, in particular an "Isospin Distillation" mechanism with a more isospin asymmetric quark phase, to be seen in charged meson yield ratios, and an onset of quark number scaling of the meson/baryon elliptic flows. The presented isospin effects on the mixed phase appear to be robust with respect to even large variations of the poorly known symmetry term at high baryon density in the hadron phase. The dependence of the results on a suitable treatment of isospin contributions in effective QCD Lagrangian approaches, at the level of explicit isovector parts and/or quark condensates, is finally discussed.Comment: 14 two column pages, 14 figures, new results with other hadron EoS. Accepted for publication in Phys.Rev.

    Particle correlations at RHIC from parton coalescence dynamics -- first results

    Full text link
    A new dynamical approach that combines covariant parton transport theory with hadronization channels via parton coalescence and fragmentation is applied to Au+Au at RHIC. Basic consequences of the simple coalescence formulas, such as elliptic flow scaling and enhanced proton/pion ratio, turn out to be rather sensitive to the spacetime aspects of coalescence dynamics.Comment: Contribution to Quark Matter 2004 (January 11-17, 2004, Oakland, CA). 4 pages, 2 EPS figs, IOP style fil

    Effect of symmetry energy on two-nucleon correlation functions in heavy-ion collisions induced by neutron-rich nuclei

    Get PDF
    Using an isospin-dependent transport model, we study the effects of nuclear symmetry energy on two-nucleon correlation functions in heavy ion collisions induced by neutron-rich nuclei. We find that the density dependence of the nuclear symmetry energy affects significantly the nucleon emission times in these collisions, leading to larger values of two-nucleon correlation functions for a symmetry energy that has a stronger density dependence. Two-nucleon correlation functions are thus useful tools for extracting information about the nuclear symmetry energy from heavy ion collisions.Comment: Revised version, to appear in Phys. Rev. Let

    A remark on an overdetermined problem in Riemannian Geometry

    Full text link
    Let (M,g)(M,g) be a Riemannian manifold with a distinguished point OO and assume that the geodesic distance dd from OO is an isoparametric function. Let ΩM\Omega\subset M be a bounded domain, with OΩO \in \Omega, and consider the problem Δpu=1\Delta_p u = -1 in Ω\Omega with u=0u=0 on Ω\partial \Omega, where Δp\Delta_p is the pp-Laplacian of gg. We prove that if the normal derivative νu\partial_{\nu}u of uu along the boundary of Ω\Omega is a function of dd satisfying suitable conditions, then Ω\Omega must be a geodesic ball. In particular, our result applies to open balls of Rn\mathbb{R}^n equipped with a rotationally symmetric metric of the form g=dt2+ρ2(t)gSg=dt^2+\rho^2(t)\,g_S, where gSg_S is the standard metric of the sphere.Comment: 8 pages. This paper has been written for possible publication in a special volume dedicated to the conference "Geometric Properties for Parabolic and Elliptic PDE's. 4th Italian-Japanese Workshop", organized in Palinuro in May 201

    A Vademecum on Quark-Hadron Duality

    Get PDF
    We present an elementary introduction to the problem of quark-hadron duality and its practical limitations, in particular as it concerns local duality violation in inclusive B meson decays. We show that the accurate definition of duality violation elaborated over the recent years allows one to derive informative constraints on violations of local duality. The magnitude of duality violation is particularly restricted in the total semileptonic widths. This explains its strong suppression in concrete dynamical estimates. We analyze the origin of the suppression factors in a model-independent setting, including a fresh perspective on the Small Velocity expansion. A new potentially significant mechanism for violation of local duality in \Gamma_sl(B) is analyzed. Yet we conclude that the amount of duality violation in \Gamma_sl(B) must be safely below the half percent level, with realistic estimates being actually much smaller. Violation of local duality in \Gamma_sl(B) is thus far below the level relevant to phenomenology. We also present a cautionary note on the B->D^* decay amplitude at zero recoil and show that it is much more vulnerable to violations of quark-hadron duality than \Gamma_sl(B). A critical review of some recent literature is given. We point out that the presently limiting factor in genuinely model-independent extraction of V_cb is the precise value of the short-distance charm quark mass. We suggest a direct and precise experimental check of local quark-hadron duality in semileptonic B->X_c l\nu decays.Comment: 48 pages, 4 figures; LaTe

    Influence of spin fluctuations on the superconducting transition temperature and resistivity in the t-J model at large N

    Full text link
    Spin fluctuations enter the calculation of the superconducting transition temperature Tc_c only in the next-to-leading order (i.e., in O(1/N2^2) of the 1/N expansion of the t-J model. We have calculated these terms and show that they have only little influence on the value of Tc_c obtained in the leading order O(1/N) in the optimal and overdoped region, i.e., for dopings larger than the instability towards a flux phase. This result disagrees with recent spin-fluctuation mediated pairing theories. The discrepancies can be traced back to the fact that in our case the coupling between electrons and spins is determined by the t-J model and not adjusted and that the spin susceptibility is rather broad and structureless and not strongly peaked at low energies as in spin-fluctuation models. Relating Tc_c and transport we show that the effective interactions in the particle-particle and particle-hole channels are not simply related within the 1/N expansion by different Fermi surface averages of the same interactin as in the case of phonons or spin fluctuations. As a result, we find that large values for Tc_c and rather small scattering rates in the normal state as found in the experiments can easily be reconciled with each other. We also show that correlation effects heavily suppress transport relaxation rates relative to quasiparticle relaxation rates in the case of phonons but not in the case of spin fluctuations.Comment: 16 pages, 10 figures, will appear in Phys. Rev.

    Magnetic moment non-conservation in magnetohydrodynamic turbulence models

    Full text link
    The fundamental assumptions of the adiabatic theory do not apply in presence of sharp field gradients as well as in presence of well developed magnetohydrodynamic turbulence. For this reason in such conditions the magnetic moment μ\mu is no longer expected to be constant. This can influence particle acceleration and have considerable implications in many astrophysical problems. Starting with the resonant interaction between ions and a single parallel propagating electromagnetic wave, we derive expressions for the magnetic moment trapping width Δμ\Delta \mu (defined as the half peak-to-peak difference in the particle magnetic moment) and the bounce frequency ωb\omega_b. We perform test-particle simulations to investigate magnetic moment behavior when resonances overlapping occurs and during the interaction of a ring-beam particle distribution with a broad-band slab spectrum. We find that magnetic moment dynamics is strictly related to pitch angle α\alpha for a low level of magnetic fluctuation, δB/B0=(103,102)\delta B/B_0 = (10^{-3}, \, 10^{-2}), where B0B_0 is the constant and uniform background magnetic field. Stochasticity arises for intermediate fluctuation values and its effect on pitch angle is the isotropization of the distribution function f(α)f(\alpha). This is a transient regime during which magnetic moment distribution f(μ)f(\mu) exhibits a characteristic one-sided long tail and starts to be influenced by the onset of spatial parallel diffusion, i.e., the variance grows linearly in time as in normal diffusion. With strong fluctuations f(α)f(\alpha) isotropizes completely, spatial diffusion sets in and f(μ)f(\mu) behavior is closely related to the sampling of the varying magnetic field associated with that spatial diffusion.Comment: 13 pages, 10 figures, submitted to PR
    corecore