12,936 research outputs found

    Gravitational waves interacting with a spinning charged particle in the presence of a uniform magnetic field

    Full text link
    The equations which determine the response of a spinning charged particle moving in a uniform magnetic field to an incident gravitational wave are derived in the linearized approximation to general relativity. We verify that 1) the components of the 4-momentum, 4-velocity and the components of the spinning tensor, both electric and magnetic moments, exhibit resonances and 2) the co-existence of the uniform magnetic field and the GW are responsible for the resonances appearing in our equations. In the absence of the GW, the magnetic field and the components of the spin tensor decouple and the magnetic resonances disappear.Comment: 19 pages, accepted for publication in Gen. Rel. Gra

    String Thermalization in Static Spacetimes

    Get PDF
    We study the evolution, the transverse spreading and the subsequent thermalization of string states in the Weyl static axisymmetric spacetime. This possesses a singular event horizon on the symmetry axis and a naked singularity along the other directions. The branching diffusion process of string bits approaching the singular event horizon provides the notion of temperature that is calculated for this process. We find that the solution of the Fokker-Planck equation in the phase space of the transverse variables of the string, can be factored as a product of two thermal distributions, provided that the classical conjugate variables satisfy the uncertainty principle. We comment on the possible physical significance of this result.Comment: 16 pages, no figures, Late

    Higher-dimensional models in gravitational theories of quarticLagrangians

    Get PDF
    Ten-dimensional models, arising from a gravitational action which includes terms up to the fourth order in curvature tensor, are discussed. The spacetime consists of one timelike dimension and two maximally symmetric subspaces, filled with matter in the form of an anisotropic fluid. Numerical integration of the cosmological field equations indicates that exponential, as well as power law, solutions are possible. We carry out a dynamical study of the results in the H_{ext} - H_{int} plane and confirm the existence of "attractors" in the evolution of the Universe. Those attracting points correspond to "extended De Sitter" spacetimes, in which the external space exhibits inflationary expansion, while the internal one contracts.Comment: LaTeXfile, 22 page

    Alfven modes driven non-linearly by metric perturbations in anisotropic magnetized cosmologies

    Full text link
    We consider anisotropic magnetized cosmologies filled with conductive plasma fluid and study the implications of metric perturbations that propagate parallel to the ambient magnetic field. It is known that in the first order (linear) approximation with respect to the amplitude of the perturbations no electric field and density perturbations arise. However, when we consider the non-linear coupling of the metric perturbations with their temporal derivatives, certain classes of solutions can induce steeply increasing in time electric field perturbations. This is verified both numerically and analytically. The source of these perturbations can be either high-frequency quantum vacuum fluctuations, driven by the cosmological pump field, in the early stages of the evolution of the Universe or astrophysical processes or a non-linear isotropization process of an initially anisotropic cosmological spacetime.Comment: 7 pages, RevTex, 3 figures ps, accepted for publication to IJMP

    Waves and instabilities in an anisotropic universe

    Get PDF
    The excitation of low frequency plasma waves in an expanding anisotropic cosmological model which contains a magnetic field frozen into the matter and pointing in the longitudinal direction is discussed. Using the exact equations governing finite-amplitude wave propagation in hydromagnetic media within the framework of general theory of relativity, we show that a spectrum of magnetized sound waves will be excited and form large scale ``\textit{damped oscillations}'' on the expanding universe. The characteristic frequency of the excited waves is slightly shifted away from the sound frequency and the shift depends on the strength of the primordial magnetic field. This magnetic field dependent shift may have an effect on the acoustic peaks of the CM

    Excitation of MHD waves in magnetized anisotropic cosmologies

    Full text link
    The excitation of cosmological perturbations in an anisotropic cosmological model and in the presence of a homogeneous magnetic field was studied, using the resistive magnetohydrodynamic (MHD) equations. We have shown that fast-magnetosonic modes, propagating normal to the magnetic field grow exponentially and saturated at high values, due to the resistivity. We also demonstrate that the jeans-like instabilities are enhanced inside a resistive and the formation of condensations formed within an anisotropic fluid influence the growing magnetosonic waves.Comment: 12 pages, RevTex, 5 figures ps, accepted for publication to Astronomy and Astrophysic

    Strings in Kerr-Newmann Black Holes

    Get PDF
    We study the evolution of strings in the equatorial plane of a Kerr-Newmann black hole. Writting the equations of motion and the constraints resulting from Hamilton's principle, three classes of exact solutions are presented, for a closed string, encircling the black hole. They all depend on two arbitrary integration functions and two constants. A process of extracting energy is examined for the case of one of the three families of solutions. This is the analog of the Penrose process for the case of a particle.Comment: 14 pages, no figures, LaTeX. To appear in Gen. Rel. Gra

    Plasma waves driven by gravitational waves in an expanding universe

    Full text link
    In a Friedmann-Robertson-Walker (FRW) cosmological model with zero spatial curvature, we consider the interaction of the gravitational waves with the plasma in the presence of a weak magnetic field. Using the relativistic hydromagnetic equations it is verified that large amplitude magnetosonic waves are excited, assuming that both, the gravitational field and the weak magnetic field do not break the homogeneity and isotropy of the considered FRW spacetime.Comment: 14 page
    corecore