85,453 research outputs found

    Origin of ferromagnetism in Cs2_2AgF4_4: importance of Ag - F covalency

    Full text link
    The magnetic nature of Cs2_{2}AgF4_{4}, an isoelectronic and isostructural analogue of La2_2CuO4_4, is analyzed using density functional calculations. The ground state is found to be ferromagnetic and nearly half metallic. We find strong hybridization of Ag-dd and F-pp states. Substantial moments reside on the F atoms, which is unusual for the halides and reflects the chemistry of the Ag(II) ions in this compound. This provides the mechanism for ferromagnetism, which we find to be itinerant in character, a result of a Stoner instability enhanced by Hund's coupling on the F

    Frustration of tilts and A-site driven ferroelectricity in KNbO_3-LiNbO_3 alloys

    Full text link
    Density functional calculations for K_{0.5}Li_{0.5}NbO_3 show strong A-site driven ferroelectricity, even though the average tolerance factor is significantly smaller than unity and there is no stereochemically active A-site ion. This is due to the frustration of tilt instabilities by A-site disorder. There are very large off-centerings of the Li ions, which contribute strongly to the anisotropy between the tetragonal and rhombohedral ferroelectric states, yielding a tetragonal ground state even without strain coupling.Comment: 4 pages, 5 figure

    Electronic Structure and Thermoelectric Prospects of Phosphide Skutterudites

    Full text link
    The prospects for high thermoelectric performance in phosphide skutterudites are investigated based on first principles calculations. We find that stoichiometric CoP_3 differs from the corresponding arsenide and antimonide in that it is metallic. As such the band structure must be modified if high thermopowers are to be achieved. In analogy to the antimonides it is expected that this may be done by filling with La. Calculations for LaFe_4P_12 show that a gap can in fact be opened by La filling, but that the valence band is too light to yield reasonable p-type thermopowers at appropriate carrier densities; n-type La filled material may be more favorable.Comment: 3 pages, 3 figures, 1 tabl

    Transition properties of potassium atom

    Full text link
    We report here oscillator strengths, transition rates, branching ratios and lifetimes due to allowed transitions in potassium (K) atom. We evaluate electric dipole (E1) amplitudes using an all order relativistic many-body perturbation method. The obtained results are compared with previously available experimental and theoretical studies. Using the E1 matrix elements mentioned above and estimated from the lifetimes of the 4P states, we determine precise values of static and dynamic polarizabilities for the first five low-lying states in the considered atom. The static polarizabilities of the ground and 4P states in the present work are more precise than the available measurements in these states. Only the present work employs relativistic theory to evaluate polarizabilities in the 3D states for which no experimental results are known to compare with. We also reexamine "magic wavelengths" for the 4P1/24S4P_{1/2} \rightarrow 4S and 4P3/24S4P_{3/2} \rightarrow 4S transitions due to the linearly polarized light which are useful to perform state-insensitive trapping of K atoms.Comment: 12 pages, 2 figure

    Revisiting Nuclear Quadrupole Moments in 3941^{39-41}K Isotopes

    Full text link
    Nuclear quadrupole moments (QQs) in three isotopes of potassium (K) with atomic mass numbers 39, 40 and 41 are evaluated more precisely in this work. The QQ value of 39^{39}K is determined to be 0.0614(6) bb by combining the available experimental result of the electric quadrupole hyperfine structure constant (BB) with our calculated B/QB/Q result of its 4P3/24P_{3/2} state. Furthermore combining this QQ value with the measured ratios QQ(40 ^{40}K)/Q/Q(39 ^{39}K) and QQ(41 ^{41}K)/Q/Q(39 ^{39}K), we obtain QQ(40 ^{40}K)=0.0764(10) b=-0.0764(10) \ b and QQ(41 ^{41}K)=0.0747(10) b=0.0747(10) \ b, respectively. These results disagree with the recently quoted standard values in the nuclear data table within the given uncertainties. The calculations are carried out by employing the relativistic coupled-cluster theory at the singles, doubles and involving important valence triples approximation. The accuracies of the calculated B/QB/Q results can be viewed on the basis of comparison between our calculated magnetic dipole hyperfine structure constants (AAs) with their corresponding measurements for many low-lying states. Both AA and BB results in few more excited states are presented for the first time.Comment: 9 pages, 1 figur

    Influence of extrusion conditions on the colour of millet-legume extrudates using digital imagery

    Get PDF
    peer-reviewedColour acts as one of the triggers for acceptance of snack foods. Digital imaging in conjunction with Adobe Photoshop can help identification of variations in the colour of extruded products. Response surface methodology-based central composite rotatable designed experiments were conducted to understand the colour components and overall acceptability (OAA) of extruded snacks made from millet–legume blends, 12–28% legume, at different moisture content (MC) of 12–24% wet basis (w.b.), extruded at varying die head temperatures (DHT) from 160–200 °C, barrel temperatures from 100–140 °C and screw speeds of 100–140 rpm. A simple digital camera was used for capturing the images of the extrudates. An L*a*b* colour model (where L* is the black/ white element, a* is green/red and b* is blue/yellow) was used for colour characterisation and OAA was determined by a hedonic scale. It was inferred from the analysis of the resulting statistically valid second order models for the responses that all the colour components were significantly affected by the amount of legume in the extruder feed and by the DHT. It was also observed that DHT, synergistically with other processing parameters, had a significant effect on all the responses. The OAA was highest for the extrudates with higher L* values. Optimum processing conditions were derived while the responses adhered to constraints. The responses of the extrudates prepared under optimum conditions exhibited no significant variation from model predicted values

    Quasi-one-dimensional magnons in an intermetallic marcasite

    Full text link
    We present inelastic neutron scattering measurements and first principles calculations examining the intermetallic marcasite CrSb2. The observed spin wave dispersion implies that the magnetic interactions are strongly one-dimensional with antiferromagnetic chains parallel to the crystalline c-axis. Such low-dimensional excitations are unexpected in a semiconducting intermetallic system. Moreover this material may be further interesting in that the magnetic anisotropy may enhance thermoelectric properties along particular crystallographic directions.Comment: 5 pages, 4 figures, Submitted to an APS journa

    Zero-Field Quantum Critical Point in Ce0.91_{0.91}Yb0.09_{0.09}CoIn5_5

    Full text link
    We present results of specific heat, electrical resistance, and magnetoresistivity measurements on single crystals of the heavy-fermion superconducting alloy Ce0.91_{0.91}Yb0.09_{0.09}CoIn5_5. Non-Fermi liquid to Fermi liquid crossovers are clearly observed in the temperature dependence of the Sommerfeld coefficient γ\gamma and resistivity data. Furthermore, we show that the Yb-doped sample with x=0.09x=0.09 exhibits universality due to an underlying quantum phase transition without an applied magnetic field by utilizing the scaling analysis of γ\gamma. Fitting of the heat capacity and resistivity data based on existing theoretical models indicates that the zero-field quantum critical point is of antiferromagnetic origin. Finally, we found that at zero magnetic field the system undergoes a third-order phase transition at the temperature Tc37T_{c3}\approx 7 K.Comment: 5 pages + 3 figures (main text) & 5 pages + 4 figures (supplementary materials
    corecore