94 research outputs found
Electronic structure of VO: charge ordering, metal-insulator transition and magnetism
The low and high-temperature phases of VO have been studied by
\textit{ab initio} calculations. At high temperature, all V atoms are
electronically equivalent and the material is metallic. Charge and orbital
ordering, associated with the distortions in the V pseudo-rutile chains, occur
below the metal-insulator transition. Orbital ordering in the low-temperature
phase, different in V and V chains, allows to explain the
distortion pattern in the insulating phase of VO. The in-chain magnetic
couplings in the low-temperature phase turn out to be antiferromagnetic, but
very different in the various V and V bonds. The V dimers
formed below the transition temperature form spin singlets, but V ions,
despite dimerization, apparently participate in magnetic ordering.Comment: 10 pages, 6 figures, 2 table
On the absence of conduction electrons in the antiferromagnetic part of the phase-separated states in magnetic semiconductors
We have calculated the energies of the phase-separated states for degenerate
antiferromagnetic semiconductors including the possibility of the existence of
conduction electrons in the antiferromagnetic part of the phase-separated
states. It is demonstrated that, at T=0, the minimum energy corresponds to a
droplet phase with absence of electrons in the antiferromagnetic part.Comment: 13 pages, 4 figure
Nonmonotonic Evolution of the Blocking Temperature in Dispersions of Superparamagnetic Nanoparticles
We use a Monte Carlo approach to simulate the influence of the dipolar
interaction on assemblies of monodisperse superparamagnetic
nanoparticles. We have identified a critical
concentration c*, that marks the transition between two different regimes in
the evolution of the blocking temperature () with interparticle
interactions. At low concentrations (c < c*) magnetic particles behave as an
ideal non-interacting system with a constant . At concentrations c > c*
the dipolar energy enhances the anisotropic energy barrier and
increases with increasing c, so that a larger temperature is required to reach
the superparamagnetic state. The fitting of our results with classical particle
models and experiments supports the existence of two differentiated regimes.
Our data could help to understand apparently contradictory results from the
literature.Comment: 13 pages, 7 figure
Determination of the lowest energy structure of Ag from first-principles calculations
The ground-state electronic and structural properties, and the electronic
excitations of the lowest energy isomers of the Ag cluster are calculated
using density functional theory (DFT) and time-dependent DFT (TDDFT) in real
time and real space scheme, respectively. The optical spectra provided by TDDFT
predict that the D dodecahedron isomer is the structural minimum of
Ag cluster. Indeed, it is borne out by the experimental findings.Comment: 4 pages, 2 figures. Accepted in Physical Review A as a brief repor
Stabilization of magnetic polarons in antiferromagnetic semiconductors by extended spin distortions
We study the problem of a magnetic polaron in an antiferromagnetic
semiconductor (ferron). We obtain an analytical solution for the distortion
produced in the magnetic structure of the d-spins due to the presence of a
charge carrier bound to an impurity. The region in which the charge carrier is
trapped is of the order of the lattice constant (small ferron) but the
distortion of the magnetic structure extends over much larger distance. It is
shown that the presence of this distortion makes the ferron more stable, and
introduces a new length scale in the problem.Comment: 5 pages, 1 figure, RevTex 4, submitted to PRB; v2: one reference
added, minor changes in the experiment discussion; v3: minor changes in tex
- …
