398 research outputs found

    Polar branches of stellar activity waves: dynamo models and observations

    Full text link
    [Abridged abstract:] Stellar activity data provide evidence of activity wave branches propagating polewards rather than equatorwards (the solar case). Stellar dynamo theory allows polewards propagating dynamo waves for certain governing parameters. We try to unite observations and theory, restricting our investigation to the simplest mean-field dynamo models. We suggest a crude preliminary systematization of the reported cases of polar activity branches. Then we present results of dynamo model simulations which contain magnetic structures with polar dynamo waves, and identify the models which look most promising for explaining the latitudinal distribution of spots in dwarf stars. Those models require specific features of stellar rotation laws, and so observations of polar activity branches may constrain internal stellar rotation. Specifically, we find it unlikely that a pronounced poleward branch can be associated with a solar-like internal rotation profile, while it can be more readily reproduced in the case of a cylindrical rotation law appropriate for fast rotators. We stress the case of the subgiant component of the active close binary HR 1099 which, being best investigated, presents the most severe problems for a dynamo interpretation. Our best model requires dynamo action in two layers separated in radius. Observations of polar activity branches provide valuable information for understanding stellar activity mechanisms and internal rotation, and thus deserve intensive observational and theoretical investigation. Current stellar dynamo theory seems sufficiently robust to accommodate the phenomenology.Comment: 13 pages, 10 figures, 4 tables, accepted by Astronomy and Astrophysic

    Dynamo models and differential rotation in late-type rapidly rotating stars

    Full text link
    Increasing evidence is becoming available about not only the surface differential rotation of rapidly rotating cool stars but, in a small number of cases, also about temporal variations, which possibly are analogous to the solar torsional oscillations. Given the present difficulties in resolving the precise nature of such variations, due to both the short length and poor resolution of the available data, theoretical input is vital to help assess the modes of behaviour that might be expected, and will facilitate interpretation of the observations. Here we take a first step in this direction by studying the variations in the convection zones of such stars, using a two dimensional axisymmetric mean field dynamo model operating in a spherical shell in which the only nonlinearity is the action of the azimuthal component of the Lorentz force of the dynamo generated magnetic field on the stellar angular velocity. We consider three families of models with different depths of dynamo-active regions. For moderately supercritical dynamo numbers we find torsional oscillations that penetrate all the way down to the bottom of the convection zones, similar to the case of the Sun. For larger dynamo numbers we find fragmentation in some cases and sometimes there are other dynamical modes of behaviour, including quasi-periodicity and chaos. We find that the largest deviations in the angular velocity distribution caused by the Lorentz force are of the order of few percent, implying that the original assumed `background' rotation field is not strongly distorted.Comment: Astronomy and Astrophysics, in pres

    No planet for HD 166435

    Get PDF
    The G0V star HD166435 has been observed by the fiber-fed spectrograph ELODIE as one of the targets in the large extra-solar planet survey that we are conducting at the Observatory of Haute-Provence. We detected coherent, low-amplitude, radial-velocity variations with a period of 3.7987days, suggesting a possible close-in planetary companion. Subsequently, we initiated a series of high-precision photometric observations to search for possible planetary transits and an additional series of CaII H and K observations to measure the level of surface magnetic activity and to look for possible rotational modulation. Surprisingly, we found the star to be photometrically variable and magnetically active. A detailed study of the phase stability of the radial-velocity signal revealed that the radial-velocity variability remains coherent only for durations of about 30days. Analysis of the time variation of the spectroscopic line profiles using line bisectors revealed a correlation between radial velocity and line-bisector orientation. All of these observations, along with a one-quarter cycle phase shift between the photometric and the radial-velocity variationss, are well explained by the presence of dark photospheric spots on HD166435. We conclude that the radial-velocity variations are not due to gravitational interaction with an orbiting planet but, instead, originate from line-profile changes stemming from star spots on the surface of the star. The quasi-coherence of the radial-velocity signal over more than two years, which allowed a fair fit with a binary model, makes the stability of this star unusual among other active stars. It suggests a stable magnetic field orientation where spots are always generated at about the same location on the surface of the star.Comment: 9 pages, 8 figures, Accepted for publication in A&

    Fluxes in H\alpha and Ca II H and K for a sample of Southern stars

    Get PDF
    The main chromospheric activity indicator is the S index, which is esentially the ratio of the flux in the core of the Ca II H and K lines to the continuum nearby, and is well studied basically for stars from F to K. Another usual chromospheric proxy is the H\alpha line, which is beleived to be tightly correlated with the Ca II index. In this work we characterize both chromospheric activity indicators, one associated with the H and K Ca II lines and the other with H\alpha, for the whole range of late type stars, from F to M. We present periodical medium-resolution echelle observations covering the complete visual range, which were taken at the CASLEO Argentinean Observatory. These observations are distributed along 7 years. We use a total of 917 flux-calibrated spectra for 109 stars which range from F6 to M5. We statistically study these two indicators for stars of different activity levels and spectral types. We directly derive the conversion factor which translate the known S index to flux in the Ca II cores, and extend its calibration to a wider spectral range. We investigate the relation between the activity measurements in the calcium and hydrogen lines, and found that the usual correlation observed is basically the product of the dependence of each flux with stellar colour, and not the product of similar activity phenomena.Comment: 12 pages, including 11 figures and 2 tables. Accepted for publication in Astronomy and Astrophysic

    MOST detects variability on tau Bootis possibly induced by its planetary companion

    Full text link
    (abridged) There is considerable interest in the possible interaction between parent stars and giant planetary companions in 51 Peg-type systems. We demonstrate from MOST satellite photometry and Ca II K line emission that there has been a persistent, variable region on the surface of tau Boo A which tracked its giant planetary companion for some 440 planetary revolutions and lies ~68deg (phi=0.8) in advance of the sub-planetary point. The light curves are folded on a range of periods centered on the planetary orbital period and phase dependent variability is quantified by Fourier methods and by the mean absolute deviation (MAD) of the folded data for both the photometry and the Ca II K line reversals. The region varies in brightness on the time scale of a rotation by ~1 mmag. In 2004 it resembled a dark spot of variable depth, while in 2005 it varied between bright and dark. Over the 123 planetary orbits spanned by the photometry the variable region detected in 2004 and in 2005 are synchronised to the planetary orbital period within 0.0015 d. The Ca II K line in 2001, 2002 and 2003 also shows enhanced K-line variability centered on phi=0.8, extending coverage to some 440 planetary revolutions. The apparently constant rotation period of the variable region and its rapid variation make an explanation in terms of conventional star spots unlikely. The lack of complementary variability at phi=0.3 and the detection of the variable region so far in advance of the sub-planetary point excludes tidal excitation, but the combined photometric and Ca II K line reversal results make a good case for an active region induced magnetically on the surface of tau Boo A by its planetary companion.Comment: 7 pages, 7 figures; accepted for publication in A&

    The spectroscopic binary system Gl 375. I. Orbital parameters and chromospheric activity

    Full text link
    We study the spectroscopic binary system Gl 375. We employ medium resolution echelle spectra obtained at the 2.15 m telescope at the Argentinian observatory CASLEO and photometric observations obtained from the ASAS database. We separate the composite spectra into those corresponding to both components. The separated spectra allow us to confirm that the spectral types of both components are similar (dMe3.5) and to obtain precise measurements of the orbital period (P = 1.87844 days), minimum masses (M_1 sin^3 i = 0.35 M_sun and M_2 sin^3 i =0.33 M_sun) and other orbital parameters. The photometric observations exhibit a sinusoidal variation with the same period as the orbital period. We interpret this as signs of active regions carried along with rotation in a tidally synchronized system, and study the evolution of the amplitude of the modulation in longer timescales. Together with the mean magnitude, the modulation exhibits a roughly cyclic variation with a period of around 800 days. This periodicity is also found in the flux of the Ca II K lines of both components, which seem to be in phase. The periodic changes in the three observables are interpreted as a sign of a stellar activity cycle. Both components appear to be in phase, which implies that they are magnetically connected. The measured cycle of approximately 2.2 years (800 days) is consistent with previous determinations of activity cycles in similar stars.Comment: 10 pages, including 11 figures and 3 tables. Accepted for publication in Astronomy & Astrophysic

    Ages for illustrative field stars using gyrochronology: viability, limitations and errors

    Full text link
    We here develop an improved way of using a rotating star as a clock, set it using the Sun, and demonstrate that it keeps time well. This technique, called gyrochronology, permits the derivation of ages for solar- and late-type main sequence stars using only their rotation periods and colors. The technique is clarified and developed here, and used to derive ages for illustrative groups of nearby, late-type field stars with measured rotation periods. We first demonstrate the reality of the interface sequence, the unifying feature of the rotational observations of cluster and field stars that makes the technique possible, and extends it beyond the proposal of Skumanich by specifying the mass dependence of rotation for these stars. We delineate which stars it cannot currently be used on. We then calibrate the age dependence using the Sun. The errors are propagated to understand their dependence on color and period. Representative age errors associated with the technique are estimated at ~15% (plus possible systematic errors) for late-F, G, K, & early-M stars. Ages derived via gyrochronology for the Mt. Wilson stars are shown to be in good agreement with chromospheric ages for all but the bluest stars, and probably superior. Gyro ages are then calculated for each of the active main sequence field stars studied by Strassmeier and collaborators where other ages are not available. These are shown to be mostly younger than 1Gyr, with a median age of 365Myr. The sample of single, late-type main sequence field stars assembled by Pizzolato and collaborators is then assessed, and shown to have gyro ages ranging from under 100Myr to several Gyr, and a median age of 1.2Gyr. Finally, we demonstrate that the individual components of the three wide binaries XiBooAB, 61CygAB, & AlphaCenAB yield substantially the same gyro ages.Comment: 58 pages, 18 color figures, accepted for publication in The Astrophysical Journal; Age uncertainties slightly modified upon correcting an algebraic error in Section

    About the p-mode frequency shifts in HD 49933

    Full text link
    We study the frequency dependence of the frequency shifts of the low-degree p modes measured in the F5V star HD 49933, by analyzing the second run of observations collected by the CoRoT satellite. The 137-day light curve is divided into two subseries corresponding to periods of low and high stellar activity. The activity-frequency relationship is obtained independently from the analysis of the mode frequencies extracted by both a local and a global peak-fitting analyses, and from a cross-correlation technique in the frequency range between 1450 microHz and 2500 microHz. The three methods return consistent results. We show that the frequency shifts measured in HD 49933 present a frequency dependence with a clear increase with frequency, reaching a maximal shift of about 2 microHz around 2100 microHz. Similar variations are obtained between the l=0 and l=1 modes. At higher frequencies, the frequency shifts show indications of a downturn followed by an upturn, consistent between the l=0 and 1 modes. We show that the frequency variation of the p-mode frequency shifts of the solar-like oscillating star HD 49933 has a comparable shape to the one observed in the Sun, which is understood to arise from changes in the outer layers due to its magnetic activity.Comment: 5 pages, 3 figures, 1 table, Accepted for publication in A\&

    Mg II h + k emission lines as stellar activity indicators of main sequence F-K stars

    Get PDF
    The main purpose of this study is to use the IUE spectra in the analysis of magnetic activity of main sequence F-K stars. Combining IUE observations of MgII and optical spectroscopy of Ca II, the registry of ctivity of stars can be extended in time. We retrieved all the high-resolution spectra of F, G, and K main sequence stars observed by IUE (i.e. 1623 spectra of 259 F to K dwarf stars). We obtained the continuum surface flux near the Mg II h+k lines near 2800 \AA and the MgII line-core surface flux from the IUE spectra. We obtained a relation between the mean continuum flux near the MgII lines with the colour BVB-V of the star. For a set of 117 nearly simultaneous observations of Mg II and Ca II fluxes of 21 F5 to K3 main sequence stars, we obtained a colour dependent relation between the Mount Wilson CaII S-index and the MgII emission line-core flux. As an application of this calibration, we computed the Mount Wilson index for all the dF to dK stars which have high resolution IUE spectra. For some of the most frequently observed main sequence stars, we analysed the Mount Wilson index S from the IUE spectra, together with the ones derived from visible spectra. We confirm the cyclic chromospheric activity of epsilon Eri (HD 22049) and beta Hydri (HD 2151), and we find a magnetic cycle in alpha Cen B (HD 128621). Complete abstract in the paper.Comment: 10 pages, accepted for publication in Astronomy and Astrophysic

    Magnetic Helicity Evolution During the Solar Activity Cycle: Observations and Dynamo Theory

    Full text link
    We study a simple model for the solar dynamo in the framework of the Parker migratory dynamo, with a nonlinear dynamo saturation mechanism based on magnetic helicity conservation arguments. We find a parameter range in which the model demonstrates a cyclic behaviour with properties similar to that of Parker dynamo with the simplest form of algebraic alpha-quenching. We compare the nonlinear current helicity evolution in this model with data for the current helicity evolution obtained during 10 years of observations at the Huairou Solar Station of China. On one hand, our simulated data demonstrate behaviour comparable with the observed phenomenology, provided that a suitable set of governing dynamo parameters is chosen. On the other hand, the observational data are shown to be rich enough to reject some other sets of governing parameters. We conclude that, in spite of the very preliminary state of the observations and the crude nature of the model, the idea of using observational data to constrain our ideas concerning magnetic field generation in the framework of the solar dynamo appears promising.Comment: 10 pages, 3 Postscript figures, uses aa.cl
    corecore