77 research outputs found
Recommended from our members
Response of spent LWR fuel to extreme environments
The research reported in this paper addresses the radiological source term which could arise when irradiated fuel in transport from a commercial light water reactor is exposed to the extreme environments postulated for some transportation accidents, specifically those involving a fire. The release of spent fuel radionuclides to the environment requires a breach of both the cask and the fuel rod cladding. Past research has given significant emphasis to evaluating the response of the shipping cask to mechanical and/or thermal loads from hypothetical accidents. Less consideration has been given to evaluating the response of the fuel rods to these environments. In this paper, the response of the fuel rods to an extreme thermal event was experimentally evaluated and the quantity of solid fuel material that could be released from the fuel rods to the cask cavity was estimated. Briefly, the objectives of this study were as follows: (1) Identify those conditions within a transportation cask which might produce fuel-rod cladding failure, emphasizing conditions associated with fires, and (2) Determine by experiment and analysis the nature of the source term so produced. The release of radionuclides from coolant or deposits on the outer surfaces of the fuel assembly was not addressed in this study. 6 figs., 2 figs
Microneedle array delivered recombinant coronavirus vaccines: Immunogenicity and rapid translational development
Background: Coronaviruses pose a serious threat to global health as evidenced by Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS), and COVID-19. SARS Coronavirus (SARS-CoV), MERS Coronavirus (MERS-CoV), and the novel coronavirus, previously dubbed 2019-nCoV, and now officially named SARS-CoV-2, are the causative agents of the SARS, MERS, and COVID-19 disease outbreaks, respectively. Safe vaccines that rapidly induce potent and long-lasting virus-specific immune responses against these infectious agents are urgently needed
Recommended from our members
Expression and characterization of SARS-CoV-2 spike protein in Thermothelomyces heterothallica C1
The COVID-19 pandemic demonstrated a pressing need for rapid, adaptive, and scalable manufacturing of vaccines and reagents. With the transition into an endemic disease and rising threats of other emerging pandemics, production of these biologicals requires a stable and sustainable supply chain and accessible distribution methods. In this study, we demonstrate the strength of an engineered filamentous fungal platform, Thermothelomyces heterothallica C1, for high volumetric productivity of the full-length spike glycoprotein. Spike protein produced in this system is highly thermostable and immunization of mice with spike made in C1 or mammalian platforms resulted in a similar humoral response. Additionally, it was shown that the native N-glycan profile can be redecorated with complex sialylated structures, if necessary, resulting in a more human-like glycan profile, without impacting binding characteristics as shown experimentally and in simulations. Through extensive physicochemical analysis, the C1-produced spike performs similarly to spike proteins produced in other commercially available systems. The data presented is evidence that C1 can be a strong platform for production of complex glycosylated recombinant proteins such as subunit antigen vaccines
Genome-wide profiling of 24 hr diel rhythmicity in the water flea, Daphnia pulex: network analysis reveals rhythmic gene expression and enhances functional gene annotation
- …
