120 research outputs found

    Reconstructing the Forest of Lineage Trees of Diverse Bacterial Communities Using Bio-inspired Image Analysis

    Full text link
    Cell segmentation and tracking allow us to extract a plethora of cell attributes from bacterial time-lapse cell movies, thus promoting computational modeling and simulation of biological processes down to the single-cell level. However, to analyze successfully complex cell movies, imaging multiple interacting bacterial clones as they grow and merge to generate overcrowded bacterial communities with thousands of cells in the field of view, segmentation results should be near perfect to warrant good tracking results. We introduce here a fully automated closed-loop bio-inspired computational strategy that exploits prior knowledge about the expected structure of a colony's lineage tree to locate and correct segmentation errors in analyzed movie frames. We show that this correction strategy is effective, resulting in improved cell tracking and consequently trustworthy deep colony lineage trees. Our image analysis approach has the unique capability to keep tracking cells even after clonal subpopulations merge in the movie. This enables the reconstruction of the complete Forest of Lineage Trees (FLT) representation of evolving multi-clonal bacterial communities. Moreover, the percentage of valid cell trajectories extracted from the image analysis almost doubles after segmentation correction. This plethora of trustworthy data extracted from a complex cell movie analysis enables single-cell analytics as a tool for addressing compelling questions for human health, such as understanding the role of single-cell stochasticity in antibiotics resistance without losing site of the inter-cellular interactions and microenvironment effects that may shape it

    Finite element reliability analysis of structures using the dimensional reduction method

    No full text
    Finite Element Reliability Analysis (FERA) has been used to evaluate the reliability of structures. Mean and variance of the structural response is often estimated with the use of approximate methods, while structural response distribution is approximated based on Monte Carlo simulation (MCS). In this paper, FERA is applied in an efficient manner with the use of a Multiplicative form of Dimensional Reduction Method (M-DRM), which can estimate accurately the statistical moments and the probability distribution of the structural response, e.g., drift of a structure. The proposed approach is combined with OpenSees FE software and illustrated through the nonlinear pushover and nonlinear dynamic analysis of a steel frame. MCS is also performed for comparison of the proposed method.Non UBCUnreviewedThis collection contains the proceedings of ICASP12, the 12th International Conference on Applications of Statistics and Probability in Civil Engineering held in Vancouver, Canada on July 12-15, 2015. Abstracts were peer-reviewed and authors of accepted abstracts were invited to submit full papers. Also full papers were peer reviewed. The editor for this collection is Professor Terje Haukaas, Department of Civil Engineering, UBC Vancouver.Facult
    corecore