802 research outputs found
Anomalous optical phonons in FeTe pnictides: spin state, magnetic order, and lattice anharmonicity
Polarized Raman-scattering spectra of non-superconducting, single-crystalline
FeTe are investigated as function of temperature. We have found a relation
between the magnitude of ordered magnetic moments and the linewidth of A1g
phonons at low temperatures. This relation is attributed to the intermediate
spin state (S=1) and the orbital degeneracy of the Fe ions. Spin-phonon
coupling constants have been estimated based on microscopic modeling using
density-functional theory and analysis of the local spin density. Our
observations show the importance of orbital degrees of freedom for the Fe-based
superconductors with large ordered magnetic moments, while small magnetic
moment of Fe ions in some iron pnictides reflects the low spin state of Fe ions
in those systems.Comment: 17 pages, 3 figure
Thermochromatographic Investigation of 13N Labelled Nitrous Gases and of Fission Noble Gases at Low Temperatures
Saharan dust events at the Jungfraujoch: detection by wavelength dependence of the single scattering albedo and analysis of the events during the years 2001 and 2002
International audienceScattering and absorption coefficients have been measured continuously at several wavelengths since March 2001 at the high altitude site Jungfraujoch (3580 m a.s.l.). From these data, the wavelength dependences of the Ångström exponent and particularly of the single scattering albedo are determined. While the exponent of the single scattering albedo is usually positive, it becomes negative during Saharan dust events (SDE) due to the greater size of the mineral aerosols and to their different chemical composition. This change in the sign of the single scattering exponent turns out to be a simple means for detecting Saharan dust events. The occurrence of SDE detected by this new method was largely confirmed by visual inspection of filter colors and by studying long-range back-trajectories. An examination of SDE over a 22 months period shows that SDE are more frequent during the March?June period as well as during October and November. The trajectory analysis indicated a mean traveling time of 96.5 h with the most important source countries situated in the northern and north-western part of the Saharan desert. Most of the SDE do not lead to a detectable increase of the 48 h total suspended particulate matter (TSP) at the Jungfraujoch. During Saharan dust events, the average contribution of this dust to hourly TSP at the JFJ is 16 ?g/m3, which corresponds to an annual mean of 0.8 ?g/m3 or 24% of TSP
Spin-driven Phase Transitions in ZnCrSe and ZnCrS Probed by High Resolution Synchrotron X-ray and Neutron Powder Diffraction
The crystal and magnetic structures of the spinel compounds ZnCrS and
ZnCrSe were investigated by high resolution powder synchrotron and
neutron diffraction. ZnCrSe exhibits a first order phase transition at
K into an incommensurate helical magnetic structure. Magnetic
fluctuations above are coupled to the crystal lattice as manifested by
negative thermal expansion. Both, the complex magnetic structure and the
anomalous structural behavior can be related to magnetic frustration.
Application of an external magnetic field shifts the ordering temperature and
the regime of negative thermal expansion towards lower temperatures. Thereby,
the spin ordering changes into a conical structure. ZnCrS shows two
magnetic transitions at K and K that are accompanied by
structural phase transitions. The crystal structure transforms from the cubic
spinel-type (space group \={3}) at high temperatures in the paramagnetic
state, via a tetragonally distorted intermediate phase (space group /
) for into a low temperature orthorhombic phase
(space group ) for . The cooperative displacement of
sulfur ions by exchange striction is the origin of these structural phase
transitions. The low temperature structure of ZnCrS is identical to the
orthorhombic structure of magnetite below the Verwey transition. When applying
a magnetic field of 5 T the system shows an induced negative thermal expansion
in the intermediate magnetic phase as observed in ZnCrSe.Comment: 11 pages, 13 figures, to be published in PR
Spin-Electron-Phonon Excitation in Re-based Half-Metallic Double Perovskites
A remarkable hardening (~ 30 cm-1) of the normal mode of vibration associated
with the symmetric stretching of the oxygen octahedra for the Ba2FeReO6 and
Sr2CrReO6 double perovskites is observed below the corresponding magnetic
ordering temperatures. The very large magnitude of this effect and its absence
for the anti-symmetric stretching mode provide evidence against a conventional
spin-phonon coupling mechanism. Our observations are consistent with a
collective excitation formed by the combination of the vibrational mode with
oscillations of local Fe or Cr 3d and Re 5d occupations and spin magnitudes.Comment: 12 pages, 4 figure
EC90-107 Nebraska Proso, Sunflower and Amaranth Variety Tests 1990
Extension circular 90-107 is about Nebraska proso, sunflower and amaranth variety tests 1990
Tracing uptake and assimilation of NO2 in spruce needles with 13N
For the first time, spruce shoots (Picea abies [L.] Karst.) were fumigated in vivo with 13N-labelled NO2 with the aim of elucidating the mechanism of NO2− trapping in the apoplast of the substomatal cavity. Uptake by the needles could be monitored on-line, and a quantitative analysis of the activity records delivered a deposition velocity in agreement with the common dry deposition estimates and ruled out rapid export processes. A fast extraction procedure was applied which revealed that NO2 did not produce any detectable traces of nitrite. In needles in which the enzymes of nitrate reduction were not induced by prior fumigation with NO2, incorporation of NO2 was partially inhibited as compared to the fully induced shoots which took up and assimilated NO2 as expected from a constant influx. The only labelled inorganic species found in the extracts was nitrate (60%), whereas the rest of the label (40%) was assimilated organic nitrogen.A quantitative analysis of the data shows that the reaction of NO2 in the apoplast yields at least three times more nitrate than nitrite, so that the existing models about the apoplastic trapping reaction, disproportionation or antioxidant scavenging, which both postulate substantial production of nitrite, have to be reconsidere
Saharan dust events at the Jungfraujoch: detection by wavelength dependence of the single scattering albedo and first climatology analysis
International audienceScattering and absorption coefficients have been measured continuously at several wavelengths since March 2001 at the high altitude site Jungfraujoch (3580ma.s.l.). From these data, the wavelength dependences of the Ångström exponent and particularly of the single scattering albedo are determined. While the exponent of the single scattering albedo usually increases with wavelength, it decreases with wavelength during Saharan dust events (SDE) due to the greater size of the mineral aerosol particles and their different chemical composition. This change in the sign of the single scattering exponent turns out to be a sensitive means for detecting Saharan dust events. The occurrence of SDE detected by this new method was confirmed by visual inspection of filter colors and by studying long-range back-trajectories. An examination of SDE over a 22-month period shows that SDE are more frequent during the March-June period as well as during October and November. The trajectory analysis indicated a mean traveling time of 96.5h, with the most important source countries situated in the northern and north-western part of the Saharan desert. Most of the SDE do not lead to a detectable increase of the 48-h total suspended particulate matter (TSP) concentration at the Jungfraujoch. During Saharan dust events, the average contribution of this dust to hourly TSP at the Jungfraujoch is 16µg/m3, which corresponds to an annual mean of 0.8µg/m3 or 24% of TSP
Evaluating chickpea lines for disease resistance in western Nebraska
Chickpeas (Cicer arietinum) are a newly emerging alternative crop for western Nebraska. Interest in this crop is increasing with approximately 4,000 hectares cropped per year over the last 5 seasons. Several disease problems have been identified that will limit optimal production success if left unchecked. These diseases include Ascochyta blight, caused by A. rabiei, and a root disease complex consisting of Rhizoctonia solani, Fusarium spp., and Pythium spp. Thus trials were conducted at multiple locations (2003–2004) throughout the Nebraska Panhandle for testing chickpea lines and cultivars for yield potential and tolerance to both types of diseases under both dryland and irrigated conditions. Differences were observed between entries and their yield response to the different irrigation systems. In general, those entries with better root disease tolerance tended to yield better from irrigated production, while those more susceptible to disease performed better under dryland conditions. Identification of better sources of resistance is encouraging for the new chickpea industry in Nebraska and this process will continue as interest and production expands
- …
