21,482 research outputs found
Lossy radial diffusion of relativistic Jovian electrons
The radial diffusion equation with synchrotron losses was solved by the Laplace transform method for near-equatorially mirroring relativistic electrons. The evolution of a power law distribution function was found and the characteristics of synchrotron burn-off are stated in terms of explicit parameters for an arbitrary diffusion coefficient. Emissivity from the radiation belts of Jupiter was studied. Asymptotic forms for the distribution in the strong synchrotron loss regime are provided
Relativistic electrons and whistlers in Jupiter's magnetosphere
The path-integrated gain of parallel propagating whistlers driven unstable by an anisotropic distribution of relativistic electrons in the stable trapping region of Jupiter's inner magnetosphere was computed. The requirement that a gain of 3 e-foldings of power balance the power lost by imperfect reflection along the flux tube sets a stably-trapped flux of electrons which is close to the non-relativistic result. Comparison with measurements shows that observed fluxes are near the stably-trapped limit, which suggests that whistler wave intensities may be high enough to cause significant diffusion of electrons accounting for the observed reduction of phase space densities. A crude estimate of the wave intensity necessary to diffuse electrons on a radial diffusion time scale yields a lower limit for the magnetic field fluctuation intensity
The Physical State of the Intergalactic Medium or Can We Measure Y?
We present an argument for a {\it lower limit} to the Compton- parameter
describing spectral distortions of the cosmic microwave background (CMB). The
absence of a detectable Gunn-Peterson signal in the spectra of high redshift
quasars demands a high ionization state of the intergalactic medium (IGM).
Given an ionizing flux at the lower end of the range indicated by the proximity
effect, an IGM representing a significant fraction of the
nucleosynthesis-predicted baryon density must be heated by sources other than
the photon flux to a temperature \go {\rm few} \times 10^5\, K. Such a gas at
the redshift of the highest observed quasars, , will produce a y\go
10^{-6}. This lower limit on rises if the Universe is open, if there is a
cosmological constant, or if one adopts an IGM with a density larger than the
prediction of standard Big Bang nucleosynthesis.Comment: Proceedings of `Unveiling the Cosmic Infrared Background', April
23-25, 1995, Maryland. Self-unpacking uuencoded, compressed tar file with two
figures include
Stochastic acceleration of solar flare protons
The acceleration of solar flare protons is considered by cyclotron damping of intense Alfven wave turbulence in a magnetic trap. The energy diffusion coefficient is computed for a near-isotropic distribution of super-Alfvenic protons and a steady-state solution for the particle spectrum is found for both transit-time and diffusive losses out of the ends of the trap. The acceleration time to a characteristic energy approximately 20 Mev/nucl can be as short as 10 sec. On the basis of phenomenological arguments an omega/2 frequency dependence for the Alfven wave spectrum is inferred. The correlation time of the turbulence lies in the range .0005 less than tau/corr less than .05s
A novel evolutionary formulation of the maximum independent set problem
We introduce a novel evolutionary formulation of the problem of finding a
maximum independent set of a graph. The new formulation is based on the
relationship that exists between a graph's independence number and its acyclic
orientations. It views such orientations as individuals and evolves them with
the aid of evolutionary operators that are very heavily based on the structure
of the graph and its acyclic orientations. The resulting heuristic has been
tested on some of the Second DIMACS Implementation Challenge benchmark graphs,
and has been found to be competitive when compared to several of the other
heuristics that have also been tested on those graphs
Fundamental Plane of Sunyaev-Zeldovich clusters
Sunyaev-Zel'dovich (SZ) cluster surveys are considered among the most
promising methods for probing dark energy up to large redshifts. However, their
premise is hinged upon an accurate mass-observable relationship, which could be
affected by the (rather poorly understood) physics of the intracluster gas. In
this letter, using a semi-analytic model of the intracluster gas that
accommodates various theoretical uncertainties, I develop a Fundamental Plane
relationship between the observed size, thermal energy, and mass of galaxy
clusters. In particular, I find that M ~ (Y_{SZ}/R_{SZ,2})^{3/4}, where M is
the mass, Y_{SZ} is the total SZ flux or thermal energy, and R_{SZ,2} is the SZ
half-light radius of the cluster. I first show that, within this model, using
the Fundamental Plane relationship reduces the (systematic+random) errors in
mass estimates to 14%, from 22% for a simple mass-flux relationship. Since
measurement of the cluster sizes is an inevitable part of observing the SZ
clusters, the Fundamental Plane relationship can be used to reduce the error of
the cluster mass estimates by ~ 34%, improving the accuracy of the resulting
cosmological constraints without any extra cost. I then argue why our
Fundamental Plane is distinctly different from the virial relationship that one
may naively expect between the cluster parameters. Finally, I argue that while
including more details of the observed SZ profile cannot significantly improve
the accuracy of mass estimates, a better understanding of the impact of
non-gravitational heating/cooling processes on the outskirts of the
intracluster medium (apart from external calibrations) might be the best way to
reduce these errors.Comment: 5 pages, 1 figure, added an analytic derivation of the Fundametal
Plane relation (which is distinctly different from the virial relation),
submitted to Ap
Topics in Born-Infeld Electrodynamics
Classical version of Born-Infeld electrodynamics is recalled and its most
important properties discussed. Then we analyze possible abelian and
non-abelian generalizations of this theory, and show how certain soliton-like
configurations can be obtained. The relationship with the Standard Model of
electroweak interactions is also mentioned.Comment: (One new reference added). 15 pages, LaTeX. To be published in the
Proceedings of XXXVII Karpacz Winter School edited in the Proceedings Series
of American Mathematical Society, editors J. Lukierski and J. Rembielinsk
Cosmic microwave background constraints on the epoch of reionization
We use a compilation of cosmic microwave anisotropy data to constrain the
epoch of reionization in the Universe, as a function of cosmological
parameters. We consider spatially-flat cosmologies, varying the matter density
(the flatness being restored by a cosmological constant), the Hubble
parameter and the spectral index of the primordial power spectrum. Our
results are quoted both in terms of the maximum permitted optical depth to the
last-scattering surface, and in terms of the highest allowed reionization
redshift assuming instantaneous reionization. For critical-density models,
significantly-tilted power spectra are excluded as they cannot fit the current
data for any amount of reionization, and even scale-invariant models must have
an optical depth to last scattering of below 0.3. For the currently-favoured
low-density model with and a cosmological constant, the
earliest reionization permitted to occur is at around redshift 35, which
roughly coincides with the highest estimate in the literature. We provide
general fitting functions for the maximum permitted optical depth, as a
function of cosmological parameters. We do not consider the inclusion of tensor
perturbations, but if present they would strengthen the upper limits we quote.Comment: 9 pages LaTeX file with ten figures incorporated (uses mn.sty and
epsf). Corrects some equation typos, superseding published versio
- …
