294 research outputs found
Surface Stress, Morphological Development, and Dislocation Nucleation During SixGe1-x Epitaxy
Utilizing Ge marker layer experiments combined with atomic number contrast (Z-contrast) imaging, we have studied the evolving surface morphology of SixGe1-x alloys during growth by molecular beam epitaxy. The marker layers map out the instability transition between planar two-dimensional (2D) growth and three-dimensional (3D) growth. The transition occurs via the gradual formation of a surface ripple as anticipated from instability theory. However, these undulations rapidly develop into crack-like surface instabilities which we simulate and explain by the mechanism of stress-driven surface diffusion. Finally, we model the large stresses associated with these features within a fracture mechanics formalism. This analysis demonstrates that crack-like instabilities provide ideal candidate sites for the nucleation of misfit dislocations
Influence of Annealing on the Interface Structure and Strain Relief in Si/Ge Heterostructures on (100) Si
Research work on the general problem of the nature and thermal stability of the Si/Ge semiconductor interface is reviewed. We report on our recent studies of the interface structure in [(Si)m(Ge)n]p superlattices and (Ge)n layers buried in Si as revealed by Raman scattering, extended X-ray absorption fine structure, and X-ray techniques. Strain relaxation and interdiffusion in the superlattices caused by annealing have been investigated, and it is found that considerable strain-enhanced intermixing together with partial relaxation of Ge-Ge bonds occurs even for very short anneal times at 700°C. Further annealing leads to diffusion at a much slower rate and to the eventual formation of an alloy layer. The Ge-Ge bond lengths in as-grown samples are that expected for a fully strained Ge layer. Similar studies of the (Ge)n layers reveal that two-dimensional pseudomorphic growth proceeds up to n = 5, probably mediated by a Si-Ge interface interdiffusion over one or two monolayers of approximately 20%. A n = 12 layer gave evidence of strain relaxation by the introduction of dislocations and clustering. Interdiffusion proceeds rapidly on annealing at 750°C
Recommended from our members
Amorphization threshold in Si-implanted strained SiGe alloy layers
The authors have examined the damage produced by Si-ion implantation into strained Si{sub 1{minus}x}Ge{sub x} epilayers. Damage accumulation in the implanted layers was monitored in situ by time-resolved reflectivity and measured by ion channeling techniques to determine the amorphization threshold in strained Si{sub 1{minus}x}Ge{sub x} (x = 0.16 and 0.29) over the temperature range 30--110 C. The results are compared with previously reported measurements on unstrained Si{sub 1{minus}x}Ge{sub x}, and with the simple model used to describe those results. They report here data which lend support to this model and which indicate that pre-existing strain does not enhance damage accumulation in the alloy layer
Amorphization Threshold in Si-Implanted Strained Sige Alloy Layers
The authors have examined the damage produced by Si-ion implantation into strained Si{sub 1{minus}x}Ge{sub x} epilayers. Damage accumulation in the implanted layers was monitored in situ by time-resolved reflectivity and measured by ion channeling techniques to determine the amorphization threshold in strained Si{sub 1{minus}x}Ge{sub x} (x = 0.16 and 0.29) over the temperature range 30--110 C. The results are compared with previously reported measurements on unstrained Si{sub 1{minus}x}Ge{sub x}, and with the simple model used to describe those results. They report here data which lend support to this model and which indicate that pre-existing strain does not enhance damage accumulation in the alloy layer
Linkage of whole genome sequencing and administrative health data in autism: A proof of concept study
Whether genetic testing in autism can help understand longitudinal health outcomes and health service needs is unclear. The objective of this study was to determine whether carrying an autism-associated rare genetic variant is associated with differences in health system utilization by autistic children and youth. This retrospective cohort study examined 415 autistic children/youth who underwent genome sequencing and data collection through a translational neuroscience program (Province of Ontario Neurodevelopmental Disorders Network). Participant data were linked to provincial health administrative databases to identify historical health service utilization, health care costs, and complex chronic medical conditions during a 3-year period. Health administrative data were compared between participants with and without a rare genetic variant in at least 1 of 74 genes associated with autism. Participants with a rare variant impacting an autism-associated gene (n = 83, 20%) were less likely to have received psychiatric care (at least one psychiatrist visit: 19.3% vs. 34.3%, p = 0.01; outpatient mental health visit: 66% vs. 77%, p = 0.04). Health care costs were similar between groups (median: 4938, p = 0.4) and genetic status was not associated with odds of being a high-cost participant (top 20%) in this cohort. There were no differences in the proportion with complex chronic medical conditions between those with and without an autism-associated genetic variant. Our study highlights the feasibility and potential value of genomic and health system data linkage to understand health service needs, disparities, and health trajectories in individuals with neurodevelopmental conditions
- …
