10,814 research outputs found

    The Potential Applications of Optical Dating to the Sandy Uplands of East Texas and Northwest Louisiana

    Get PDF
    The fine, sandy soils of East Texas and Northwest Louisiana have been the source of archaeological debate for some time. This discourse concerns the mode of burial of cultural material in the easily eroded soils and the mechanics of recent (Holocene) landform evolution. Because these deposits are typically well-drained, organic matter does not preserve well, thus hindering the dating of the geomorphic events that figure prominently in their development and the prehistoric occupations which lie buried throughout uplands of this region. A relatively new dating technique, optical dating, has much to offer this region and the archaeological community as it measures the period of time that has elapsed since sand grains were last exposed to sunlight. Hence, it directly dates the time of sediment transportation and deposition. This method is therefore applicable to a number of archaeological and geomorphic processes which may not be dated by traditional methods, owing to the lack of organic matter suitable for radiocarbon dating. In geomorphic contexts, optical dating may be preferred over radiocarbon as it directly dates the time of sedimentation rather than the age of organic matter in features such as buried soils that may be significantly different from the geomorphic event which fossilized the soil

    Representations and Properties of Generalized ArA_r Statistics

    Full text link
    A generalization of ArA_r statistics is proposed and developed. The generalized ArA_r quantum statistics is completely specified by a set of Jacobson generators satisfying a set of triple algebraic relations. Fock-Hilbert representations and Bargmann-Fock realizations are derived.Comment: 12 pages, to appear in IJMPA (2006

    The role of biofilms in subsurface transport processes

    Get PDF
    Landfill and radioactive waste disposal risk assessments focus on contaminant transport and are principally concerned with understanding the movement of gas, water and solutes through engineered barriers and natural groundwater systems. However, microbiological activity can affect transport processes, changing the chemical and physical characteristics of the subsurface environment. Such effects are generally caused by biofilms attached to rock surfaces. Currently most existing transport models have to introduce additional assumptions about the relationships between the microbial growth and changes to the porosity and permeability. These relationships are particularly poorly understood. This paper reviews recent experimental work directed at the development of biofilms and their influence on subsurface flow and the transport of contaminants in intergranular and fracture porosity flow systems. The results are then discussed in terms of a more complex conceptual model

    A Model for Classical Space-time Co-ordinates

    Get PDF
    Field equations with general covariance are interpreted as equations for a target space describing physical space time co-ordinates, in terms of an underlying base space with conformal invariance. These equations admit an infinite number of inequivalent Lagrangian descriptions. A model for reparametrisation invariant membranes is obtained by reversing the roles of base and target space variables in these considerations.Comment: 9 pages, Latex. This was the basis of a talk given at the Argonne National Laboratory 1996 Summer Institute : Topics on Non-Abelian Duality June 27-July 1

    Virtual patient design : exploring what works and why : a grounded theory study

    Get PDF
    Objectives: Virtual patients (VPs) are online representations of clinical cases used in medical education. Widely adopted, they are well placed to teach clinical reasoning skills. International technology standards mean VPs can be created, shared and repurposed between institutions. A systematic review has highlighted the lack of evidence to support which of the numerous VP designs may be effective, and why. We set out to research the influence of VP design on medical undergraduates. Methods: This is a grounded theory study into the influence of VP design on undergraduate medical students. Following a review of the literature and publicly available VP cases, we identified important design properties. We integrated them into two substantial VPs produced for this research. Using purposeful iterative sampling, 46 medical undergraduates were recruited to participate in six focus groups. Participants completed both VPs, an evaluation and a 1-hour focus group discussion. These were digitally recorded, transcribed and analysed using grounded theory, supported by computer-assisted analysis. Following open, axial and selective coding, we produced a theoretical model describing how students learn from VPs. Results: We identified a central core phenomenon designated ‘learning from the VP’. This had four categories: VP Construction; External Preconditions; Student–VP Interaction, and Consequences. From these, we constructed a three-layer model describing the interactions of students with VPs. The inner layer consists of the student's cognitive and behavioural preconditions prior to sitting a case. The middle layer considers the VP as an ‘encoded object’, an e-learning artefact and as a ‘constructed activity’, with associated pedagogic and organisational elements. The outer layer describes cognitive and behavioural change. Conclusions: This is the first grounded theory study to explore VP design. This original research has produced a model which enhances understanding of how and why the delivery and design of VPs influence learning. The model may be of practical use to authors, institutions and researchers

    Preserving the palaeoenvironmental record in Drylands: Bioturbation and its significance for luminescence-derived chronologies

    Get PDF
    Luminescence (OSL) dating has revolutionised the understanding of Late Pleistocene dryland activity. However, one of the key assumptions for this sort of palaeoenvironmental work is that sedimentary sequences have been preserved intact, enabling their use as proxy indicators of past changes. This relies on stabilisation or burial soon after deposition and a mechanism to prevent any subsequent re-mobilisation. As well as a dating technique OSL, especially at the single grain level, can be used to gain an insight into post-depositional processes that may distort or invalidate the palaeoenvironmental record of geological sediment sequences. This paper explores the possible impact of bioturbation (the movement of sediment by flora and fauna) on luminescence derived chronologies from Quaternary sedimentary deposits in Texas and Florida (USA) which have both independent radiocarbon chronologies and archaeological evidence. These sites clearly illustrate the ability of bioturbation to rejuvenate ancient weathered sandy bedrock and/or to alter depositional stratigraphies through the processes of exhumation and sub-surface mixing of sediment. The use of multiple OSL replicate measurements is advocated as a strategy for checking for bioturbated sediment. Where significant OSL heterogeneity is found, caution should be taken with the derived OSL ages and further measurements at the single grain level are recommended. Observations from the linear dunes of the Kalahari show them to have no bedding structure and to have OSL heterogeneity similar to that shown from the bioturbated Texan and Florida sites. The Kalahari linear dunes could have therefore undergone hitherto undetected post-depositional sediment disturbance which would have implications for the established OSL chronology for the region

    Feasibility study of an Integrated Program for Aerospace vehicle Design (IPAD). Volume 3: Support of the design process

    Get PDF
    The user requirements for computer support of the IPAD design process are identified. The user-system interface, language, equipment, and computational requirements are considered

    Helical, Angular and Radial Ordering in Narrow Capillaries

    Full text link
    To enlighten the nature of the order-disorder and order-order transitions in block copolymer melts confined in narrow capillaries we analyze peculiarities of the conventional Landau weak crystallization theory of systems confined to cylindrical geometry. This phenomenological approach provides a quantitative classification of the cylindrical ordered morphologies by expansion of the order parameter spatial distribution into the eigenfunctions of the Laplace operator. The symmetry of the resulting ordered morphologies is shown to strongly depend both on the boundary conditions (wall preference) and the ratio of the cylinder radius and the wave length of the critical order parameter fluctuations, which determine the bulk ordering of the system under consideration. In particular, occurrence of the helical morphologies is a rather general consequence of the imposed cylindrical symmetry for narrow enough capillaries. We discuss also the ODT and OOT involving some other simplest morphologies. The presented results are relevant also to other ordering systems as charge-density waves appearing under addition of an ionic solute to a solvent in its critical region, weakly charged polyelectrolyte solutions in poor solvent, microemulsions etc.Comment: 6 pages, 3 figure

    Extending the aridity record of the Southwest Kalahari: current problems and future perspectives

    Get PDF
    An extensive luminescence-based chronological framework has allowed the reconstruction of expansions and contractions of the Kalahari Desert over the last 50 ka. However, this chronology is largely based on near-surface pits and sediment exposures. These are the points on the landscape most prone to reactivation and resetting of the luminescence dating ‘clock’. This is proving to be a limiting feature for extending palaeoenvironmental reconstructions further back in time. One way to obviate this is to sample desert marginal areas that only become active during significant arid phases. An alternative is to find and sample deep stratigraphic exposures. The Mamatwan manganese mine at Hotazel in the SW Kalahari meets both these criteria. Luminescence dating of this site shows the upper sedimentary unit to span at least the last 60 ka with tentative age estimates from underlying cemented aeolian units dating back to the last interglacial and beyond. Results from Mamatwan are comparable to new and previously published data from linear dunes in the SW Kalahari but extend back much further. Analysis of the entire data set of luminescence ages for the SW Kalahari brings out important inferences that suggest that different aeolian forms (1) have been active over different time scales in the past, (2) have different sensitivities to environmental changes and (3) have different time scales over which they record and preserve the palaeoenvironmental record. This implies that future optically stimulated luminescence work and palaeoenvironmental reconstructions must consider both site location and its relationship to desert margins and sediment depositional styles, so that the resolution and duration of the aridity record can be optimally understood
    corecore