308 research outputs found

    Steady-state visual evoked potentials and phase synchronization in migraine

    Get PDF
    We investigate phase synchronization in EEG recordings from migraine patients. We use the analytic signal technique, based on the Hilbert transform, and find that migraine brains are characterized by enhanced alpha band phase synchronization in presence of visual stimuli. Our findings show that migraine patients have an overactive regulatory mechanism that renders them more sensitive to external stimuli.Comment: 4 page

    Distortions of Subjective Time Perception Within and Across Senses

    Get PDF
    Background: The ability to estimate the passage of time is of fundamental importance for perceptual and cognitive processes. One experience of time is the perception of duration, which is not isomorphic to physical duration and can be distorted by a number of factors. Yet, the critical features generating these perceptual shifts in subjective duration are not understood. Methodology/Findings: We used prospective duration judgments within and across sensory modalities to examine the effect of stimulus predictability and feature change on the perception of duration. First, we found robust distortions of perceived duration in auditory, visual and auditory-visual presentations despite the predictability of the feature changes in the stimuli. For example, a looming disc embedded in a series of steady discs led to time dilation, whereas a steady disc embedded in a series of looming discs led to time compression. Second, we addressed whether visual (auditory) inputs could alter the perception of duration of auditory (visual) inputs. When participants were presented with incongruent audio-visual stimuli, the perceived duration of auditory events could be shortened or lengthened by the presence of conflicting visual information; however, the perceived duration of visual events was seldom distorted by the presence of auditory information and was never perceived shorter than their actual durations. Conclusions/Significance: These results support the existence of multisensory interactions in the perception of duration and, importantly, suggest that vision can modify auditory temporal perception in a pure timing task. Insofar as distortions in subjective duration can neither be accounted for by the unpredictability of an auditory, visual or auditory-visual event, we propose that it is the intrinsic features of the stimulus that critically affect subjective time distortions

    Separate processing of texture and form in the ventral stream : evidence from fMRI and visual agnosia.

    Get PDF
    Real-life visual object recognition requires the processing of more than just geometric (shape, size, and orientation) properties. Surface properties such as color and texture are equally important, particularly for providing information about the material properties of objects. Recent neuroimaging research suggests that geometric and surface properties are dealt with separately, within the lateral occipital cortex (LOC) and the collateral sulcus (CoS), respectively. Here we compared objects that either differed in aspect ratio or in surface texture only, keeping all other visual properties constant. Results on brain-intact participants confirmed that surface texture activates an area in the posterior CoS, quite distinct from the area activated by shape within LOC. We also tested two patients with visual object agnosia, one of whom (DF) performed well on the texture task but at chance on the shape task, while the other (MS) showed the converse pattern. This behavioral double dissociation was matched by a parallel neuroimaging dissociation, with activation in CoS but not LOC in patient DF, and activation in LOC but not CoS in patient MS. These data provide presumptive evidence that the areas respectively activated by shape and texture play a causally necessary role in the perceptual discrimination of these features

    double dissociation between the extrastriate body area and the posterior superior temporal sulcus during biological motion perception converging evidence from tms and fmri

    Get PDF
    Our brains engage numerous regions when exposed to biological motion, with the posterior superior temporal sulcus (pSTS) being the primary locus. The exact roles of hMT+ and the extrastriate body area (EBA) remain unclear. Here, we set out to determine the specific roles of pSTS and EBA during biological motion perception, focusing on walker orientation and walking direction. To obtain converging evidence, we conducted separate TMS and fMRI experiments within the same subjects (N = 12). Two separate tasks were used in the TMS study: walker orientation probing form processing and walking direction probing motion/sequence processing. Task performance was compared before and after applying repetitive offline TMS (1 Hz) over EBA and pSTS (based on fMRI-guided stereotaxy). In the fMRI study, EBA and pSTS were mapped in separate scans using standard localizers. Subsequently, runs with point-light walkers were subjected to MVPA, determining the amount of static (orientation) and dynamic (direction) information p..

    Dynamics of generalized PT-symmetric dimers with time-periodic gain–loss

    Get PDF
    A parity-time (PT)-symmetric system with periodically varying-in-time gain and loss modeled by two coupled Schrödinger equations (dimer) is studied. It is shown that the problem can be reduced to a perturbed pendulum-like equation. This is done by finding two constants of motion. Firstly, a generalized problem using Melnikov-type analysis and topological degree arguments is studied for showing the existence of periodic (libration), shift- periodic (rotation), and chaotic solutions. Then these general results are applied to the PT-symmetric dimer. It is interestingly shown that if a sufficient condition is satisfied, then rotation modes, which do not exist in the dimer with constant gain–loss, will persist. An approximate threshold for PT-broken phase corresponding to the disappearance of bounded solutions is also presented. Numerical study is presented accompanying the analytical results

    The prognostic role of post-induction FDG-PET in patients with follicular lymphoma: a subset analysis from the FOLL05 trial of the Fondazione Italiana Linfomi (FIL)

    Get PDF
    BACKGROUND: [18F]fluorodeoxyglucose-positron emission tomography (PET) is emerging as a strong diagnostic and prognostic tool in follicular lymphoma (FL) patients. PATIENTS AND METHODS: In a subset analysis of the FOLL05 trial (NCT00774826), we investigated the prognostic role of post-induction PET (PI-PET) scan. Patients were eligible to this study if they had a PI-PET scan carried out within 3 months from the end of induction immunochemotherapy. Progression-free survival (PFS) was the primary study end point. RESULTS: A total of 202 patients were eligible and analysed for this study. The median age was 55 years (range 33-75). Overall, PI-PET was defined as positive in 49 (24%) patients. Conventional response assessment with CT scan was substantially modified by PET: 15% (22/145) of patients considered as having a complete response (CR) after CT were considered as having partial response (PR) after PI-PET and 53% (30/57) patients considered as having a PR after CT were considered as a CR after PI-PET. With a median follow-up of 34 months, the 3-year PFS was 66% and 35%, respectively, for patients with negative and positive PI-PET (P<0.001). At multivariate analysis, PI-PET (hazard ratio 2.57, 95% confidence interval 1.52-4.34, P<0.001) was independent of conventional response, FLIPI and treatment arm. Also, the prognostic role of PI-PET was maintained within each FLIPI risk group. CONCLUSIONS: In FL patients, PI-PET substantially modifies response assessment and is strongly predictive for the risk of progression. PET should be considered in further updates of response criteria

    Carbon nanotube dosimetry: from workplace exposure assessment to inhalation toxicology

    Get PDF
    BACKGROUND: Dosimetry for toxicology studies involving carbon nanotubes (CNT) is challenging because of a lack of detailed occupational exposure assessments. Therefore, exposure assessment findings, measuring the mass concentration of elemental carbon from personal breathing zone (PBZ) samples, from 8 U.S.-based multi-walled CNT (MWCNT) manufacturers and users were extrapolated to results of an inhalation study in mice. RESULTS: Upon analysis, an inhalable elemental carbon mass concentration arithmetic mean of 10.6 μg/m(3) (geometric mean 4.21 μg/m(3)) was found among workers exposed to MWCNT. The concentration equates to a deposited dose of approximately 4.07 μg/d in a human, equivalent to 2 ng/d in the mouse. For MWCNT inhalation, mice were exposed for 19 d with daily depositions of 1970 ng (equivalent to 1000 d of a human exposure; cumulative 76 yr), 197 ng (100 d; 7.6 yr), and 19.7 ng (10 d; 0.76 yr) and harvested at 0, 3, 28, and 84 d post-exposure to assess pulmonary toxicity. The high dose showed cytotoxicity and inflammation that persisted through 84 d after exposure. The middle dose had no polymorphonuclear cell influx with transient cytotoxicity. The low dose was associated with a low grade inflammatory response measured by changes in mRNA expression. Increased inflammatory proteins were present in the lavage fluid at the high and middle dose through 28 d post-exposure. Pathology, including epithelial hyperplasia and peribronchiolar inflammation, was only noted at the high dose. CONCLUSION: These findings showed a limited pulmonary inflammatory potential of MWCNT at levels corresponding to the average inhalable elemental carbon concentrations observed in U.S.-based CNT facilities and estimates suggest considerable years of exposure are necessary for significant pathology to occur at that level

    European Red List of Habitats Part 1. Marine habitats

    Get PDF
    The European Red List of Habitats provides an overview of the risk of collapse (degree of endangerment) of marine, terrestrial and freshwater habitats in the European Union (EU28) and adjacent regions (EU28+), based on a consistent set of categories and criteria, and detailed data and expert knowledge from involved countries1. A total of 257 benthic marine habitat types were assessed. In total, 19% (EU28) and 18% (EU28+) of the evaluated habitats were assessed as threatened in categories Critically Endangered, Endangered and Vulnerable. An additional 12% were Near Threatened in the EU28 and 11% in the EU28+. These figures are approximately doubled if Data Deficient habitats are excluded. The percentage of threatened habitat types differs across the regional seas. The highest proportion of threatened habitats in the EU28 was found in the Mediterranean Sea (32%), followed by the North-East Atlantic (23%), the Black Sea (13%) and then the Baltic Sea (8%). There was a similar pattern in the EU28+. The most frequently cited pressures and threats were similar across the four regional seas: pollution (eutrophication), biological resource use other than agriculture or forestry (mainly fishing but also aquaculture), natural system modifications (e.g. dredging and sea defence works), urbanisation and climate change. Even for habitats where the assessment outcome was Data Deficient, the Red List assessment process has resulted in the compilation of a substantial body of useful information to support the conservation of marine habitats

    Prolonged Neuromodulation of Cortical Networks Following Low-Frequency rTMS and Its Potential for Clinical Interventions

    Get PDF
    Non-invasive brain stimulation safely induces persistent large-scale neural modulation in functionally connected brain circuits. Interruption models of repetitive transcranial magnetic stimulation (rTMS) capitalize on the acute impact of brain stimulation, which decays over minutes. However, rTMS also induces longer-lasting impact on cortical functions, evident by the use of multi-session rTMS in clinical population for therapeutic purposes. Defining the persistent cortical dynamics induced by rTMS is complicated by the complex balance of excitation and inhibition among functionally connected networks. Nonetheless, it is these neuronal dynamic responses that are essential for the development of new neuromodulatory protocols for translational applications. We will review evidence of prolonged changes of cortical response, tens of minutes following one session of low frequency rTMS over the cortex. We will focus on the different methods which resulted in prolonged behavioral and brain changes, such as the combination of brain stimulation techniques, and individually tailored stimulation protocols. We will also highlight studies which apply these methods in multi-session stimulation practices to extend stimulation impact into weeks and months. Our data and others’ indicate that delayed cortical dynamics may persist much longer than previously thought and have potential as an extended temporal window during which cortical plasticity may be enhanced

    The Pathophysiological Underpinnings of Gamma-Band Alterations in Psychiatric Disorders

    Get PDF
    Investigating the biophysiological substrates of psychiatric illnesses is of great interest to our understanding of disorders' etiology, the identification of reliable biomarkers, and potential new therapeutic avenues. Schizophrenia represents a consolidated model of gamma alterations arising from the aberrant activity of parvalbumin-positive GABAergic interneurons, whose dysfunction is associated with perineuronal net impairment and neuroinflammation. This model of pathogenesis is supported by molecular, cellular, and functional evidence. Proof for alterations of gamma oscillations and their underlying mechanisms has also been reported in bipolar disorder and represents an emerging topic for major depressive disorder. Although evidence from animal models needs to be further elucidated in humans, the pathophysiology of gamma-band alteration represents a common denominator for different neuropsychiatric disorders. The purpose of this narrative review is to outline a framework of converging results in psychiatric conditions characterized by gamma abnormality, from neurochemical dysfunction to alterations in brain rhythms
    corecore