35 research outputs found
On-Chip Fluorescence-Activated Cell Sorting by an Integrated Miniaturized Ultrasonic Transducer
Smoldering multiple myeloma: prevalence and current evidence guiding treatment decisions
Agnieszka Blum, Despina Bazou, Peter O’Gorman Department of Hematology, Mater Misericordiae University Hospital, Dublin, UK Abstract: Smoldering multiple myeloma (SMM) is an asymptomatic plasma cell proliferative disorder associated with risk of progression to symptomatic multiple myeloma (MM) or amyloidosis. In comparison to monoclonal gammopathy of undetermined significance (MGUS), SMM has a much higher risk of progression to MM. Thanks to advances in our understanding of the risk factors, the subset of patients with ultra-high risk of progression to MM (80%–90% at 2 years) has been identified. The revision of the diagnostic criteria resulted in changes in the management of this cohort of patients. In contrast to the management guidelines for MGUS patients, SMM patients need to be studied more intensively in order to identify biomarkers necessary for accurate risk stratification. In this review, we focus on the risk of progression from SMM to MM, as well as the influence of early treatment on overall survival, time to progression and quality of life. Keywords: smoldering multiple myeloma, risk factor, biomarker, genomic aberrations, glycan analysi
Long-term viability and proliferation of alginate-encapsulated 3-D HepG2 aggregates formed in an ultrasound trap
We report proof of principle here of a gel encapsulation technique that departs from the minimum surface area to volume restriction of spherical microcapsules and allows gelation of preformed high-density (≥2 × 104 cells/aggregate) 3-D HepG2 cell aggregates. The process involves forming a discoid 3-D cell aggregate in an ultrasound standing wave trap (USWT), which is subsequently recovered and encapsulated in alginate/CaCl2 hydrogel. The size of the ultrasound-formed aggregates was dependent upon the initial cell concentration, and was in the range of 0.4-2.6 mm in diameter (for cell concentrations ranging between 104 and 5 × 106/ml). At low cell concentrations (≤5 × 105/ml), aggregates were 2-D, while at concentrations of ≥106/ml, 3-D aggregates were generated. Cells in non- and encapsulated 3-D HepG2 aggregates remained 70-80% viable over 10 days in culture. The proliferative activity of the aggregates resulted in the doubling of the aggregate cell number and a subsequent increase in the aggregate thickness, while albumin secretion levels in encapsulated aggregates was 4.5 times higher compared to non-encapsulated, control aggregates. The results reported here suggest that the ultrasound trap can provide an alternative, novel approach of hydrogel cell encapsulation and thus rapidly (within 5 min) produce in vitro models for hepatocyte functional studies (for example, toxicity studies particularly if primary hepatocytes are used) in a tissue-mimetic manner. © 2008 Elsevier Ltd. All rights reserved
Multiple three-dimensional mammalian cell aggregates formed away from solid substrata in ultrasound standing waves
Single and multiple three-dimensional cell aggregates of human red blood cells (RBCs) and HepG2 cells were formed rapidly in low mega-Hertz ultrasound standing wave fields of different geometries. A single discoid aggregate was formed in a half-wavelength pathlength resonator at a cell concentration sufficient to produce a 3D structure. Multiple cell aggregates were formed on the axis of a cylindrical resonator with a plane transducer (discoid aggregates); in a resonator with a tubular transducer and in the cross-fields of plane and tubular transducers and two plane orthogonal transducers (all cylindrical aggregates). Mechanically strong RBC aggregates were obtained by crosslinking with wheat germ agglutinin (WGA, a lectin). Scanning electron microscopy showed aggregate surface porous structures when RBCs were mixed with WGA before sonication and tighter packing when ultrasonically preformed aggregates were subsequently exposed to a flow containing WGA. HepG2 cell aggregates showed strong accumulation of F-actin at sites of cell-cell contact consistent with increased mechanical stability. The aggregates had a porous surface, and yet confocal microscopy revealed a tight packing of cells in the aggregate's inner core. © 2009 American Institute of Chemical Engineers Biotechnol
Pharmacological characterization of nanoparticle-induced platelet microaggregation using quartz crystal microbalance with dissipation: comparison with light aggregometry
Maria J Santos-Martinez,1,2,* Krzysztof A Tomaszewski,1,3,* Carlos Medina,1 Despina Bazou,4 John F Gilmer,1 Marek W Radomski1,5,6 1School of Pharmacy and Pharma­ceutical Sciences and Trinity Biomedical Sciences Institute, 2School of Medicine, Trinity College Dublin, University of Dublin, Dublin, Ireland; 3Department of Anatomy, Jagiellonian University Medical College, Krakow, Poland; 4Edwin L Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; 5Kardio-Med Silesia, Zabrze, 6Medical University of Silesia, Katowice, Poland *These authors contributed equally to this paper Background: Engineered nanoparticles (NPs) can induce platelet activation and aggregation, but the mechanisms underlying these interactions are not well understood. This could be due in part to use of devices that study platelet function under quasi-static conditions with low sensitivity to measure platelet microaggregation. Therefore, in this study we investigated the pharmacological pathways and regulators of NP-induced platelet microaggregation under flow conditions at nanoscale using quartz crystal microbalance with dissipation (QCM-D) and compared the data thus obtained with those generated by light aggregometry. Methods: Blood was collected from healthy volunteers, and platelet-rich plasma was obtained. Thrombin receptor-activating peptide, a potent stimulator of platelet function, and pharmacological inhibitors were used to modulate platelet microaggregation in the presence/absence of silica (10 nm and 50 nm) and polystyrene (23 nm) NPs. Light aggregometry was used to study platelet aggregation in macroscale. Optical, immunofluorescence, and scanning electron microscopy were also used to visualize platelet aggregates. Results: Platelet microaggregation was enhanced by thrombin receptor-activating peptide, whereas prostacyclin, nitric oxide donors, acetylsalicylic acid, and phenanthroline, but not adenosine diphosphate (ADP) blockers, were able to inhibit platelet microaggregation. NPs caused platelet microaggregation, an effect not detectable by light aggregometry. NP-induced microaggregation was attenuated by platelet inhibitors. Conclusion: NP-induced platelet microaggregation appears to involve classical proaggregatory pathways (thromboxane A2-mediated and matrix metalloproteinase-2-mediated) and can be regulated by endogenous (prostacyclin) and pharmacological (acetylsalicylic acid, phenanthroline, and nitric oxide donors) inhibitors of platelet function. Quartz crystal microbalance with dissipation, but not light aggregometry, is an appropriate method for studying NP-induced microaggregation. Keywords: platelet microaggregation, quartz crystal microbalance with dissipation, pharmacology, nanoparticle
