2,317 research outputs found
Transition from connected to fragmented vegetation across an environmental gradient: scaling laws in ecotone geometry
A change in the environmental conditions across space—for example, altitude or latitude—can cause significant changes in the density of a vegetation type and, consequently, in spatial connectivity. We use spatially explicit simulations to study the transition from connected to fragmented vegetation. A static (gradient percolation) model is compared to dynamic (gradient contact process) models. Connectivity is characterized from the perspective of various species that use this vegetation type for habitat and differ in dispersal or migration range, that is, “step length” across the landscape. The boundary of connected vegetation delineated by a particular step length is termed the “ hull edge.” We found that for every step length and for every gradient, the hull edge is a fractal with dimension 7/4. The result is the same for different spatial models, suggesting that there are universal laws in ecotone geometry. To demonstrate that the model is applicable to real data, a hull edge of fractal dimension 7/4 is shown on a satellite image of a piñon‐juniper woodland on a hillside. We propose to use the hull edge to define the boundary of a vegetation type unambiguously. This offers a new tool for detecting a shift of the boundary due to a climate change
Significance of groundwater discharge along the coast of Poland as a source of dissolved metals to the southern Baltic Sea
© The Author(s), 2016. This is the author's version of the work and is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marine Pollution Bulletin 109 (2016): 151–162, doi:10.1016/j.marpolbul.2016.06.008.Fluxes of dissolved trace metals (Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn) via groundwater discharge along the southern Baltic Sea have been assessed for the first time. Dissolved metal concentrations in groundwater samples were less variable than in seawater and were generally one or two orders of magnitude higher: Cd (2.1-2.8 nmolL−1), Co (8.70-8.76 nmolL−1), Cr (18.1-18.5 nmolL−1), Mn (2.4-2.8 μmolL−1), Pb (1.2-1.5 nmolL−1), Zn (33.1-34.0 nmolL−1). Concentrations of Cu (0.5-0.8 nmolL−1) and Ni (4.9-5.8 nmolL−1) were, respectively, 32 and 4 times lower, than in seawater. Groundwater-derived trace metal fluxes constitute 93% for Cd, 80% for Co, 91% for Cr, 6% for Cu, 66% for Mn, 4% for Ni, 70% for Pb and 93% for Zn of the total freshwater trace metal flux to the Bay of Puck. Groundwater-seawater mixing, redox conditions and Mn-cycling are the main processes responsible for trace metal distribution in groundwater discharge sites.The study reports the results obtained within the framework of the following projects: the statutory activities of the Institute of Oceanology Polish Academy of Sciences theme 2.2, research project No. 2012/05/N/ST10/02761 sponsored by the National Science Centre, and AMBER, the BONUS+ EU FP6 Project. We would like to thank Polish-U.S. Fulbright Commission for funding Szymczycha B. post-doctoral studies at USGS.2017-06-1
Depth of the vadose zone controls aquifer biogeochemical conditions and extent of anthropogenic nitrogen removal
© The Author(s), 2017. This is the author's version of the work and is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Water Research 123 (2017): 794-801, doi:10.1016/j.watres.2017.06.048.We investigated biogeochemical conditions and watershed features controlling the extent of nitrate removal through microbial dinitrogen (N2) production within the surficial glacial aquifer located on the north and south shores of Long Island, NY, USA. The extent of N2 production differs within portions of the aquifer, with greatest N2 production observed at the south shore of Long Island where the vadose zone is thinnest, while limited N2 production occurred under the thick vadose zones on the north shore. In areas with a shallow water table and thin vadose zone, low oxygen concentrations and sufficient DOC concentrations are conducive to N2 production. Results support the hypothesis that in aquifers without a significant supply of sediment-bound reducing potential, vadose zone thickness exerts an important control of the extent of N2 production. Since quantification of excess N2 relies on knowledge of equilibrium N2 concentration at recharge, calculated based on temperature at recharge, we further identify several features, such as land use and cover, seasonality of recharge, and climate change that should be considered to refine estimation of recharge temperature, its deviation from mean annual air temperature, and resulting deviation from expected equilibrium gas concentrations.Project supported by the Polish-U.S. Fulbright Commission, the USGS Coastal and Marine Geology Program, the National Fish and Wildlife Foundation, and the USGS/National Park Service Water-Quality Assessment and Monitoring program.2019-06-1
Investigation of the epitaxial growth of AIIIBV-N heterostructures for solar cell applications
The InGaAsN/GaAs heterostructures proposed in 1996 by Kondow et al. have been successfully used in telecom laser constructions on GaAs
substrate. Additionally, the InGaAsN with a bandgap of 1 eV are lattice matched to both GaAs and Ge for the nitrogen and indium contents of around
3 % and 9 %, respectively. These features make this semiconductor an ideal
candidate for high-efficiency multijunction solar cells (MJSCs) based on the
Ge/InGaAsN/GaAs/InGaP structure. The growth technology of the GaAsN
alloy-based diluted nitrides is very difficult because of the large miscibility gap
between GaAs and GaN.
When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/2097
Peningkatan Kemampuan Pemecahan Masalah Matematis Menggunakan Pendekatan Saintifik dan Pendekatan Ctl
This research aims to obtain information about the effect of instruction using scientific approach on the improvement of mathematical problem solving ability among students of State Junior High School (SMP Negeri) 13 Pontianak, West Kalimantan. The method used in this research was experiment research with a randomized pretest-posttest comparison group design. The results of data analysis showed that there were significant differences between the pretest and the posttest, namely using the scientific approach (pretest: 61.78%; posttest: 69.3 3%) and using CTL approach (pretest 58.50%; posttest 65.89%). This suggests that the improvement of the students\u27 ability in the mathematical problem solving using scientific approach is higher than the ability in the mathematical problem solving using contextual teaching and learning, and the improvement of the students\u27 ability is classified as moderate
Photonic crystal fibers used in a multi-wavelength source and as transmission fiber in a WDM system
Excitons in InGaAs Quantum Dots without Electron Wetting Layer States
The Stranski-Krastanov (SK) growth-mode facilitates the self-assembly of
quantum dots (QDs) using lattice-mismatched semiconductors, for instance InAs
and GaAs. SK QDs are defect-free and can be embedded in heterostructures and
nano-engineered devices. InAs QDs are excellent photon emitters: QD-excitons,
electron-hole bound pairs, are exploited as emitters of high quality single
photons for quantum communication. One significant drawback of the SK-mode is
the wetting layer (WL). The WL results in a continuum rather close in energy to
the QD-confined-states. The WL-states lead to unwanted scattering and dephasing
processes of QD-excitons. Here, we report that a slight modification to the
SK-growth-protocol of InAs on GaAs -- we add a monolayer of AlAs following InAs
QD formation -- results in a radical change to the QD-excitons. Extensive
characterisation demonstrates that this additional layer eliminates the
WL-continuum for electrons enabling the creation of highly charged excitons
where up to six electrons occupy the same QD. Single QDs grown with this
protocol exhibit optical linewidths matching those of the very best SK QDs
making them an attractive alternative to standard InGaAs QDs
Interaction of matter-wave gap solitons in optical lattices
We study mobility and interaction of gap solitons in a Bose-Einstein
condensate (BEC) confined by an optical lattice potential. Such localized
wavepackets can exist only in the gaps of the matter-wave band-gap spectrum and
their interaction properties are shown to serve as a measure of discreteness
imposed onto a BEC by the lattice potential. We show that inelastic collisions
of two weakly localized near-the-band-edge gap solitons provide simple and
effective means for generating strongly localized in-gap solitons through
soliton fusion.Comment: 12 pages, 7 figure
Association between the c.*229C>T polymorphism of the topoisomerase IIb binding protein 1 (TopBP1) gene and breast cancer
Topoisomerase IIb binding protein 1 (TopBP1)
is involved in cell survival, DNA replication, DNA damage
repair and cell cycle checkpoint control. The biological
function of TopBP1 and its close relation with BRCA1
prompted us to investigate whether alterations in the
TopBP1 gene can influence the risk of breast cancer.
The aim of this study was to examine the association
between five polymorphisms (rs185903567, rs116645643,
rs115160714, rs116195487, and rs112843513) located in
the 30UTR region of the TopBP1 gene and breast cancer
risk as well as allele-specific gene expression. Five hundred
thirty-four breast cancer patients and 556 population controls
were genotyped for these SNPs. Allele-specific Top-
BP1 mRNA and protein expressions were determined by
using real time PCR and western blotting methods,
respectively. Only one SNP (rs115160714) showed an
association with breast cancer. Compared to homozygous
common allele carriers, heterozygous and homozygous for
the T variant had significantly increased risk of breast
cancer (adjusted odds ratio = 3.81, 95 % confidence
interval: 1.63–8.34, p = 0.001). Mean TopBP1 mRNA and
protein expression were higher in the individuals with the
CT or TT genotype. There was a significant association
between the rs115160714 and tumor grade and stage. Most
carriers of minor allele had a high grade (G3) tumors
classified as T2-T4N1M0. Our study raises a possibility
that a genetic variation of TopBP1 may be implicated in
the etiology of breast cancer
The Suppressor of AAC2 Lethality SAL1 Modulates Sensitivity of Heterologously Expressed Artemia ADP/ATP Carrier to Bongkrekate in Yeast
The ADP/ATP carrier protein (AAC) expressed in Artemia franciscana is refractory to bongkrekate. We generated two strains of Saccharomyces cerevisiae where AAC1 and AAC3 were inactivated and the AAC2 isoform was replaced with Artemia AAC containing a hemagglutinin tag (ArAAC-HA). In one of the strains the suppressor of ΔAAC2 lethality, SAL1, was also inactivated but a plasmid coding for yeast AAC2 was included, because the ArAACΔsal1Δ strain was lethal. In both strains ArAAC-HA was expressed and correctly localized to the mitochondria. Peptide sequencing of ArAAC expressed in Artemia and that expressed in the modified yeasts revealed identical amino acid sequences. The isolated mitochondria from both modified strains developed 85% of the membrane potential attained by mitochondria of control strains, and addition of ADP yielded bongkrekate-sensitive depolarizations implying acquired sensitivity of ArAAC-mediated adenine nucleotide exchange to this poison, independent from SAL1. However, growth of ArAAC-expressing yeasts in glycerol-containing media was arrested by bongkrekate only in the presence of SAL1. We conclude that the mitochondrial environment of yeasts relying on respiratory growth conferred sensitivity of ArAAC to bongkrekate in a SAL1-dependent manner. © 2013 Wysocka-Kapcinska et al
- …
