342 research outputs found
A Functional Naturalism
I provide two arguments against value-free naturalism. Both are based on considerations concerning biological teleology. Value-free naturalism is the thesis that both (1) everything is, at least in principle, under the purview of the sciences and (2) all scientific facts are purely non-evaluative. First, I advance a counterexample to any analysis on which natural selection is necessary to biological teleology. This should concern the value-free naturalist, since most value-free analyses of biological teleology appeal to natural selection. My counterexample is unique in that it is likely to actually occur. It concerns the creation of synthetic life. Recent developments in synthetic biology suggest scientists will eventually be able to develop synthetic life. Such life, however, would not have any of its traits naturally selected for. Second, I develop a simple argument that biological teleology is a scientific but value-laden notion. Consequently, value-free naturalism is false. I end with some concluding remarks on the implications for naturalism, the thesis that (1). Naturalism may be salvaged only if we reject (2). (2) is a dogma that unnecessarily constrains our conception of the sciences. Only a naturalism that recognizes value-laden notions as scientifically respectable can be true. Such a naturalism is a functional naturalism
Audio Cards for High-Resolution and Economical Electronic Transport Studies
We report on a technique for determining electronic transport properties
using commercially available audio cards. Using a typical 24-bit audio card
simultaneously as a sine wave generator and a narrow bandwidth ac voltmeter, we
show the spectral purity of the analog-to-digital and digital-to-analog
conversion stages, including an effective number of bits greater than 16 and
dynamic range better than 110 dB. We present two circuits for transport studies
using audio cards: a basic circuit using the analog input to sense the voltage
generated across a device due to the signal generated simultaneously by the
analog output; and a digitally-compensated bridge to compensate for nonlinear
behavior of low impedance devices. The basic circuit also functions as a high
performance digital lock-in amplifier. We demonstrate the application of an
audio card for studying the transport properties of spin-valve nanopillars, a
two-terminal device that exhibits Giant Magnetoresistance (GMR) and whose
nominal impedance can be switched between two levels by applied magnetic fields
and by currents applied by the audio card.Comment: 4 pages, 5 figures. Under submission with Review of Scientific
Instruments. Submitted February 24, 201
Temperature dependence of the switching field distributions in all-perpendicular spin-valve nanopillars
We present temperature dependent switching measurements of the Co/Ni
multilayered free element of 75 nm diameter spin-valve nanopillars. Angular
dependent hysteresis measurements as well as switching field measurements taken
at low temperature are in agreement with a model of thermal activation over a
perpendicular anisotropy barrier. However, the statistics of switching (mean
switching field and switching variance) from 20 K up to 400 K are in
disagreement with a N\'{e}el-Brown model that assumes a temperature independent
barrier height and anisotropy field. We introduce a modified N\'{e}el-Brown
model thats fit the experimental data in which we take a dependence
to the barrier height and the anisotropy field due to the temperature dependent
magnetization and anisotropy energy.Comment: 5 pages, 4 figure
Stability of 2pi domain walls in ferromagnetic nanorings
The stability of 2pi domain walls in ferromagnetic nanorings is investigated
via calculation of the minimum energy path that separates a 2pi domain wall
from the vortex state of a ferromagnetic nanoring. Trapped domains are stable
when they exist between certain types of transverse domain walls, i.e., walls
in which the edge defects on the same side of the magnetic strip have equal
sign and thus repel. Here the energy barriers between these configurations and
vortex magnetization states are obtained using the string method. Due to the
geometry of a ring, two types of 2pi walls must be distinguished that differ by
their overall topological index and exchange energy. The minimum energy path
corresponds to the expulsion of a vortex. The energy barrier for annihilation
of a 2pi wall is compared to the activation energy for transitions between the
two ring vortex states.Comment: 4 pages, 2 figure
Temperature dependent nucleation and propagation of domain walls in a sub-100 nm perpendicularly magnetized Co/Ni multilayer
We present a study of the temperature dependence of the switching fields in
Co/Ni-based perpendicularly magnetized spin-valves. While magnetization
reversal of all-perpendicular Co/Ni spin valves at ambient temperatures is
typically marked by a single sharp step change in resistance, low temperature
measurements can reveal a series of resistance steps, consistent with
non-uniform magnetization configurations. We propose a model that consists of
domain nucleation, propagation and annihilation to explain the temperature
dependence of the switching fields. Interestingly, low temperature (<30 K) step
changes in resistance that we associate with domain nucleation, have a bimodal
switching field and resistance step distribution, attributable to two competing
nucleation pathways.Comment: 5 pages, 4 figure
Time-Resolved Magnetic Relaxation of a Nanomagnet on Subnanosecond Time Scales
We present a two-current-pulse temporal correlation experiment to study the
intrinsic subnanosecond nonequilibrium magnetic dynamics of a nanomagnet during
and following a pulse excitation. This method is applied to a model
spin-transfer system, a spin valve nanopillar with perpendicular magnetic
anisotropy. Two-pulses separated by a short delay (< 500 ps) are shown to lead
to the same switching probability as a single pulse with a duration that
depends on the delay. This demonstrates a remarkable symmetry between magnetic
excitation and relaxation and provides a direct measurement of the magnetic
relaxation time. The results are consistent with a simple finite temperature
Fokker-Planck macrospin model of the dynamics, suggesting more coherent
magnetization dynamics in this short time nonequilibrium limit than near
equilibrium
Bimodal switching field distributions in all-perpendicular spin-valve nanopillars
Switching field measurements of the free layer element of 75 nm diameter
spin-valve nanopillars reveal a bimodal distribution of switching fields at low
temperatures (below 100 K). This result is inconsistent with a model of thermal
activation over a single perpendicular anisotropy barrier. The correlation
between antiparallel to parallel and parallel to antiparallel switching fields
increases to nearly 50% at low temperatures. This reflects random fluctuation
of the shift of the free layer hysteresis loop between two different
magnitudes, which may originate from changes in the dipole field from the
polarizing layer. The magnitude of the loop shift changes by 25% and is
correlated to transitions of the spin-valve into an antiparallel configuration.Comment: 3 pages, 4 figures. Submitted to JAP for 58th MMM Proceeding
Multivariate Granger Causality and Generalized Variance
Granger causality analysis is a popular method for inference on directed
interactions in complex systems of many variables. A shortcoming of the
standard framework for Granger causality is that it only allows for examination
of interactions between single (univariate) variables within a system, perhaps
conditioned on other variables. However, interactions do not necessarily take
place between single variables, but may occur among groups, or "ensembles", of
variables. In this study we establish a principled framework for Granger
causality in the context of causal interactions among two or more multivariate
sets of variables. Building on Geweke's seminal 1982 work, we offer new
justifications for one particular form of multivariate Granger causality based
on the generalized variances of residual errors. Taken together, our results
support a comprehensive and theoretically consistent extension of Granger
causality to the multivariate case. Treated individually, they highlight
several specific advantages of the generalized variance measure, which we
illustrate using applications in neuroscience as an example. We further show
how the measure can be used to define "partial" Granger causality in the
multivariate context and we also motivate reformulations of "causal density"
and "Granger autonomy". Our results are directly applicable to experimental
data and promise to reveal new types of functional relations in complex
systems, neural and otherwise.Comment: added 1 reference, minor change to discussion, typos corrected; 28
pages, 3 figures, 1 table, LaTe
A Compact Delay Model for OTS Devices
This paper presents a novel compact delay model of Ovonic Threshold Switch
(OTS) devices that works efficiently for circuit simulations. The internal
state variable of the two terminal devices is estimated using a delay system
that uses a few electrical components related to a suggested equivalent circuit
of the device. Finally, we tested the proposed model against measured data from
devices fabricated by Western Digital Research
Spin transport and spin torque in antiferromagnetic devices
Ferromagnets are key materials for sensing and memory applications. In contrast, antiferromagnets which represent the more common form of magnetically ordered materials, have found less practical application beyond their use for establishing reference magnetic orientations via exchange bias. This might change in the future due to the recent progress in materials research and discoveries of antiferromagnetic spintronic phenomena suitable for device applications. Experimental demonstration of the electrical switching and detection of the Néel order open a route towards memory devices based on antiferromagnets. Apart from the radiation and magnetic-field hardness, memory cells fabricated from antiferromagnets can be inherently multilevel, which could be used for neuromorphic computing. Switching speeds attainable in antiferromagnets far exceed those of ferromagnetic and semiconductor memory technologies. Here we review the recent progress in electronic spin-transport and spin-torque phenomena in antiferromagnets that are dominantly of the relativistic quantum mechanical origin. We discuss their utility in pure antiferromagnetic or hybrid ferromagnetic/antiferromagnetic memory devices
- …
