2,600 research outputs found
Photon-Photon Absorption of Very High Energy Gamma-Rays from Microquasars: Application to LS 5039
Very high energy (VHE) gamma-rays have recently been detected from the
Galactic black-hole candidate and microquasar LS 5039. A plausible site for the
production of these VHE gamma-rays is the region close to the mildly
relativistic outflow. However, at distances comparable to the binary
separation, the intense photon field of the stellar companion will lead to
substantial gamma-gamma absorption of VHE gamma-rays. If the system is viewed
at a substantial inclination (i > 0), this absorption feature will be modulated
on the orbital period of the binary as a result of a phase-dependent
stellar-radiation intensity and pair-production threshold. We apply our results
to LS 5039 and find that (1) gamma-gamma absorption effects will be substantial
if the photon production site is located at a distance from the central compact
object of the order of the binary separation (~ 2.5e12 cm) or less; (2) the
gamma-gamma absorption depth will be largest at a few hundred GeV, leading to a
characteristic absorption trough; (3) the gamma-gamma absorption feature will
be strongly modulated on the orbital period of the binary, characterized by a
spectral hardening accompanying periodic dips of the VHE gamma-ray flux; and
(4) gamma rays can escape virtually unabsorbed, even from within ~ 10^{12} cm,
when the star is located behind the production site as seen by the observer.Comment: Submitted to ApJ Letters. AASTeX, 12 ms pages, including 4 eps
figure
Gated combo nanodevice for sequential operations on single electron spin
An idea for a nanodevice in which an arbitrary sequence of three basic
quantum single qubit gates - negation, Hadamard and phase shift - can be
performed on a single electron spin. The spin state is manipulated using the
spin-orbit coupling and the electron trajectory is controlled by the electron
wave function self-focusing mechanism due to the electron interaction with the
charge induced on metal gates. We present results of simulations based on
iterative solution of the time dependent Schr\"odinger equation in which the
subsequent operations on the electron spin can be followed and controlled.
Description of the moving electron wave packet requires evaluation of the
electric field within the entire nanodevice in each time step
Geomagnetic field and altitude effects on the performance of future IACT arrays
The performance of IACT's arrays is sensitive to the altitude and geomagnetic
field (GF) of the observatory site. Both effects play important role in the
region of the sub-TeV gamma-ray measurements. We investigate the influence of
GF on detection rates and the energy thresholds for five possible locations of
the future CTA observatory using the Monte Carlo simulations. We conclude that
the detection rates of gamma rays and the energy thresholds of the arrays can
be fitted with linear functions of the altitude and the component of the GF
perpendicular to the shower axis core. These results can be directly
extrapolated for any possible localization of the CTA. In this paper we also
show the influence of both geophysical effects on the images of shower and
gamma/hadron separation.Comment: 4 pages, 6 figures, two-column. Contribution to ICRC 2013 proceeding
Simulation of Ultra-High Energy Photon Propagation in the Geomagnetic Field
The identification of primary photons or specifying stringent limits on the
photon flux is of major importance for understanding the origin of ultra-high
energy (UHE) cosmic rays. We present a new Monte Carlo program allowing
detailed studies of conversion and cascading of UHE photons in the geomagnetic
field. The program named PRESHOWER can be used both as an independent tool or
together with a shower simulation code. With the stand-alone version of the
code it is possible to investigate various properties of the particle cascade
induced by UHE photons interacting in the Earth's magnetic field before
entering the Earth's atmosphere. Combining this program with an extensive air
shower simulation code such as CORSIKA offers the possibility of investigating
signatures of photon-initiated showers. In particular, features can be studied
that help to discern such showers from the ones induced by hadrons. As an
illustration, calculations for the conditions of the southern part of the
Pierre Auger Observatory are presented.Comment: 41 pages, 9 figures, added references in introduction, corrected
energy in row 1 of Table 3, extended caption of Table
Gamma Rays from Compton Scattering in the Jets of Microquasars: Application to LS 5039
Recent HESS observations show that microquasars in high-mass systems are
sources of VHE gamma-rays. A leptonic jet model for microquasar gamma-ray
emission is developed. Using the head-on approximation for the Compton cross
section and taking into account angular effects from the star's orbital motion,
we derive expressions to calculate the spectrum of gamma rays when nonthermal
jet electrons Compton-scatter photons of the stellar radiation field.
Calculations are presented for power-law distributions of nonthermal electrons
that are assumed to be isotropically distributed in the comoving jet frame, and
applied to -ray observations of LS 5039. We conclude that (1) the TeV
emission measured with HESS cannot result only from Compton-scattered stellar
radiation (CSSR), but could be synchrotron self-Compton (SSC) emission or a
combination of CSSR and SSC; (2) fitting both the HESS data and the EGRET data
associated with LS 5039 requires a very improbable leptonic model with a very
hard electron spectrum. Because the gamma rays would be variable in a leptonic
jet model, the data sets are unlikely to be representative of a simultaneously
measured gamma-ray spectrum. We therefore attribute EGRET gamma rays primarily
to CSSR emission, and HESS gamma rays to SSC emission. Detection of periodic
modulation of the TeV emission from LS 5039 would favor a leptonic SSC or
cascade hadron origin of the emission in the inner jet, whereas stochastic
variability alone would support a more extended leptonic model. The puzzle of
the EGRET gamma rays from LS 5039 will be quickly solved with GLAST. (Abridged)Comment: 17 pages, 11 figures, ApJ, in press, June 1, 2006, corrected eq.
The influence of strength of hyperon-hyperon interactions on neutron star properties
An equation of state of neutron star matter with strange baryons has been
obtained. The effects of the strength of hyperon-hyperon interactions on the
equations of state constructed for the chosen parameter sets have been
analyzed. Numerous neutron star models show that the appearance of hyperons is
connected with the increasing density in neutron star interiors. The performed
calculations have indicated that the change of the hyperon-hyperon coupling
constants affects the chemical composition of a neutron star. The obtained
numerical hyperon star models exclude large population of strange baryons in
the star interior.Comment: 18 pages, 22 figures, accepted to be published in Journal of Physics
G: Nuclear and Particle Physic
Time-Dependent Synchrotron and Compton Spectra from Jets of Microquasars
Jet models for the high-energy emission of Galactic X-ray binary sources have
regained significant interest with detailed spectral and timing studies of the
X-ray emission from microquasars, the recent detection by the HESS
collaboration of very-high-energy gamma-rays from the microquasar LS~5039, and
the earlier suggestion of jet models for ultraluminous X-ray sources observed
in many nearby galaxies. Here we study the synchrotron and Compton signatures
of time-dependent electron injection and acceleration, adiabatic and radiative
cooling, and different jet geometries in the jets of Galactic microquasars.
Synchrotron, synchrotron-self-Compton, and external-Compton radiation processes
with soft photons provided by the companion star and the accretion disk are
treated. An analytical solution is presented to the electron kinetic equation
for general power-law geometries of the jets for Compton scattering in the
Thomson regime. We pay particular attention to predictions concerning the rapid
flux and spectral variability signatures expected in a variety of scenarios,
making specific predictions concerning possible spectral hysteresis, similar to
what has been observed in several TeV blazars. Such predictions should be
testable with dedicated monitoring observations of Galactic microquasars and
ultraluminous X-ray sources using Chandra and/or XMM-Newton.Comment: Accepted for publication in ApJ; 37 manuscript pages, including 10
eps figures; uses AASTeX macro
- …
