5,007 research outputs found
Classical Evolution of Quantum Elliptic States
The hydrogen atom in weak external fields is a very accurate model for the
multiphoton excitation of ultrastable high angular momentum Rydberg states, a
process which classical mechanics describes with astonishing precision. In this
paper we show that the simplest treatment of the intramanifold dynamics of a
hydrogenic electron in external fields is based on the elliptic states of the
hydrogen atom, i.e., the coherent states of SO(4), which is the dynamical
symmetry group of the Kepler problem. Moreover, we also show that classical
perturbation theory yields the {\it exact} evolution in time of these quantum
states, and so we explain the surprising match between purely classical
perturbative calculations and experiments. Finally, as a first application, we
propose a fast method for the excitation of circular states; these are
ultrastable hydrogenic eigenstates which have maximum total angular momentum
and also maximum projection of the angular momentum along a fixed direction. %Comment: 8 Pages, 2 Figures. Accepted for publication in Phys. Rev.
Dynamics of correlations due to a phase noisy laser
We analyze the dynamics of various kinds of correlations present between two
initially entangled independent qubits, each one subject to a local phase noisy
laser. We give explicit expressions of the relevant quantifiers of correlations
for the general case of single-qubit unital evolution, which includes the case
of a phase noisy laser. Although the light field is treated as classical, we
find that this model can describe revivals of quantum correlations. Two
different dynamical regimes of decay of correlations occur, a Markovian one
(exponential decay) and a non-Markovian one (oscillatory decay with revivals)
depending on the values of system parameters. In particular, in the
non-Markovian regime, quantum correlations quantified by quantum discord show
an oscillatory decay faster than that of classical correlations. Moreover,
there are time regions where nonzero discord is present while entanglement is
zero.Comment: 7 pages, 3 figures, accepted for publication in Phys. Scripta,
special issue for CEWQO 2011 proceeding
Chemical regulators of epithelial plasticity reveal a nuclear receptor pathway controlling myofibroblast differentiation
Plasticity in epithelial tissues relates to processes of embryonic development, tissue fibrosis and cancer progression. Pharmacological modulation of epithelial transitions during disease progression may thus be clinically useful. Using human keratinocytes and a robotic high-content imaging platform, we screened for chemical compounds that reverse transforming growth factor β (TGF-β)-induced epithelial-mesenchymal transition. In addition to TGF-β receptor kinase inhibitors, we identified small molecule epithelial plasticity modulators including a naturally occurring hydroxysterol agonist of the liver X receptors (LXRs), members of the nuclear receptor transcription factor family. Endogenous and synthetic LXR agonists tested in diverse cell models blocked α-smooth muscle actin expression, myofibroblast differentiation and function. Agonist-dependent LXR activity or LXR overexpression in the absence of ligand counteracted TGF-β-mediated myofibroblast terminal differentiation and collagen contraction. The protective effect of LXR agonists against TGF-β-induced pro-fibrotic activity raises the possibility that anti-lipidogenic therapy may be relevant in fibrotic disorders and advanced cancer
Energy Dissipation Burst on the Traffic Congestion
We introduce an energy dissipation model for traffic flow based on the
optimal velocity model (OV model). In this model, vehicles are defined as
moving under the rule of the OV model, and energy dissipation rate is defined
as the product of the velocity of a vehicle and resistant force which works to
it.Comment: 15 pages, 19 Postscript figures. Reason for replacing: This is the
submitted for
Time-evolving measures and macroscopic modeling of pedestrian flow
This paper deals with the early results of a new model of pedestrian flow,
conceived within a measure-theoretical framework. The modeling approach
consists in a discrete-time Eulerian macroscopic representation of the system
via a family of measures which, pushed forward by some motion mappings, provide
an estimate of the space occupancy by pedestrians at successive time steps.
From the modeling point of view, this setting is particularly suitable to
treat nonlocal interactions among pedestrians, obstacles, and wall boundary
conditions. In addition, analysis and numerical approximation of the resulting
mathematical structures, which is the main target of this work, follow more
easily and straightforwardly than in case of standard hyperbolic conservation
laws, also used in the specialized literature by some Authors to address
analogous problems.Comment: 27 pages, 6 figures -- Accepted for publication in Arch. Ration.
Mech. Anal., 201
Semiclassical Inequivalence of Polygonalized Billiards
Polygonalization of any smooth billiard boundary can be carried out in
several ways. We show here that the semiclassical description depends on the
polygonalization process and the results can be inequivalent. We also establish
that generalized tangent-polygons are closest to the corresponding smooth
billiard and for de Broglie wavelengths larger than the average length of the
edges, the two are semiclassically equivalent.Comment: revtex, 4 ps figure
Initial correlations effects on decoherence at zero temperature
We consider a free charged particle interacting with an electromagnetic bath
at zero temperature. The dipole approximation is used to treat the bath
wavelengths larger than the width of the particle wave packet. The effect of
these wavelengths is described then by a linear Hamiltonian whose form is
analogous to phenomenological Hamiltonians previously adopted to describe the
free particle-bath interaction. We study how the time dependence of decoherence
evolution is related with initial particle-bath correlations. We show that
decoherence is related to the time dependent dressing of the particle. Moreover
because decoherence induced by the T=0 bath is very rapid, we make some
considerations on the conditions under which interference may be experimentally
observed.Comment: 16 pages, 1 figur
- …
