641 research outputs found
Testing formula satisfaction
We study the query complexity of testing for properties defined by read once formulae, as instances of massively parametrized properties, and prove several testability and non-testability results. First we prove the testability of any property accepted by a Boolean read-once formula involving any bounded arity gates, with a number of queries exponential in \epsilon and independent of all other parameters. When the gates are limited to being monotone, we prove that there is an estimation algorithm, that outputs an approximation of the distance of the input from
satisfying the property. For formulae only involving And/Or gates, we provide a more efficient test whose query complexity is only quasi-polynomial in \epsilon. On the other hand we show that such testability results do not hold in general for formulae over non-Boolean alphabets; specifically we construct a property defined by a read-once arity 2 (non-Boolean) formula over alphabets of size 4, such that any 1/4-test for it requires a number of queries depending on the formula size
Bose-Einstein distribution, condensation transition and multiple stationary states in multiloci evolution of diploid population
The mapping between genotype and phenotype is encoded in the complex web of
epistatic interaction between genetic loci. In this rugged fitness landscape,
recombination processes, which tend to increase variation in the population,
compete with selection processes that tend to reduce genetic variation. Here we
show that the Bose-Einstein distribution describe the multiple stationary
states of a diploid population under this multi-loci evolutionary dynamics.
Moreover, the evolutionary process might undergo an interesting condensation
phase transition in the universality class of a Bose-Einstein condensation when
a finite fraction of pairs of linked loci, is fixed into given allelic states.
Below this phase transition the genetic variation within a species is
significantly reduced and only maintained by the remaining polymorphic loci.Comment: (12 pages, 7 figures
Jamming transition in a homogeneous one-dimensional system: the Bus Route Model
We present a driven diffusive model which we call the Bus Route Model. The
model is defined on a one-dimensional lattice, with each lattice site having
two binary variables, one of which is conserved (``buses'') and one of which is
non-conserved (``passengers''). The buses are driven in a preferred direction
and are slowed down by the presence of passengers who arrive with rate lambda.
We study the model by simulation, heuristic argument and a mean-field theory.
All these approaches provide strong evidence of a transition between an
inhomogeneous ``jammed'' phase (where the buses bunch together) and a
homogeneous phase as the bus density is increased. However, we argue that a
strict phase transition is present only in the limit lambda -> 0. For small
lambda, we argue that the transition is replaced by an abrupt crossover which
is exponentially sharp in 1/lambda. We also study the coarsening of gaps
between buses in the jammed regime. An alternative interpretation of the model
is given in which the spaces between ``buses'' and the buses themselves are
interchanged. This describes a system of particles whose mobility decreases the
longer they have been stationary and could provide a model for, say, the flow
of a gelling or sticky material along a pipe.Comment: 17 pages Revtex, 20 figures, submitted to Phys. Rev.
Stochastic processes and conformal invariance
We discuss a one-dimensional model of a fluctuating interface with a dynamic
exponent . The events that occur are adsorption, which is local, and
desorption which is non-local and may take place over regions of the order of
the system size. In the thermodynamic limit, the time dependence of the system
is given by characters of the conformal field theory of percolation. This
implies in a rigorous way a connection between CFT and stochastic processes.
The finite-size scaling behavior of the average height, interface width and
other observables are obtained. The avalanches produced during desorption are
analyzed and we show that the probability distribution of the avalanche sizes
obeys finite-size scaling with new critical exponents.Comment: 4 pages, 6 figures, revtex4. v2: change of title and minor
correction
Does hardcore interaction change absorbing type critical phenomena?
It has been generally believed that hardcore interaction is irrelevant to
absorbing type critical phenomena because the particle density is so low near
an absorbing phase transition. We study the effect of hardcore interaction on
the N species branching annihilating random walks with two offspring and report
that hardcore interaction drastically changes the absorbing type critical
phenomena in a nontrivial way. Through Langevin equation type approach, we
predict analytically the values of the scaling exponents, in one dimension for all N > 1. Direct numerical
simulations confirm our prediction. When the diffusion coefficients for
different species are not identical, and vary
continuously with the ratios between the coefficients.Comment: 4 pages, 1 figur
Critical behavior of a one-dimensional monomer-dimer reaction model with lateral interactions
A monomer-dimer reaction lattice model with lateral repulsion among the same
species is studied using a mean-field analysis and Monte Carlo simulations. For
weak repulsions, the model exhibits a first-order irreversible phase transition
between two absorbing states saturated by each different species. Increasing
the repulsion, a reactive stationary state appears in addition to the saturated
states. The irreversible phase transitions from the reactive phase to any of
the saturated states are continuous and belong to the directed percolation
universality class. However, a different critical behavior is found at the
point where the directed percolation phase boundaries meet. The values of the
critical exponents calculated at the bicritical point are in good agreement
with the exponents corresponding to the parity-conserving universality class.
Since the adsorption-reaction processes does not lead to a non-trivial local
parity-conserving dynamics, this result confirms that the twofold symmetry
between absorbing states plays a relevant role in determining the universality
class. The value of the exponent , which characterizes the
fluctuations of an interface at the bicritical point, supports the
Bassler-Brown's conjecture which states that this is a new exponent in the
parity-conserving universality class.Comment: 19 pages, 22 figures, to be published in Phys. Rev
The non-equilibrium phase transition of the pair-contact process with diffusion
The pair-contact process 2A->3A, 2A->0 with diffusion of individual particles
is a simple branching-annihilation processes which exhibits a phase transition
from an active into an absorbing phase with an unusual type of critical
behaviour which had not been seen before. Although the model has attracted
considerable interest during the past few years it is not yet clear how its
critical behaviour can be characterized and to what extent the diffusive
pair-contact process represents an independent universality class. Recent
research is reviewed and some standing open questions are outlined.Comment: Latexe2e, 53 pp, with IOP macros, some details adde
Robustness and Generalization
We derive generalization bounds for learning algorithms based on their
robustness: the property that if a testing sample is "similar" to a training
sample, then the testing error is close to the training error. This provides a
novel approach, different from the complexity or stability arguments, to study
generalization of learning algorithms. We further show that a weak notion of
robustness is both sufficient and necessary for generalizability, which implies
that robustness is a fundamental property for learning algorithms to work
Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \sqrt{s}=7\TeV
A measurement of the production cross-section for top quark pairs(\ttbar)
in collisions at \sqrt{s}=7 \TeV is presented using data recorded with
the ATLAS detector at the Large Hadron Collider. Events are selected in two
different topologies: single lepton (electron or muon ) with large
missing transverse energy and at least four jets, and dilepton (,
or ) with large missing transverse energy and at least two jets. In a
data sample of 2.9 pb-1, 37 candidate events are observed in the single-lepton
topology and 9 events in the dilepton topology. The corresponding expected
backgrounds from non-\ttbar Standard Model processes are estimated using
data-driven methods and determined to be events and events, respectively. The kinematic properties of the selected events are
consistent with SM \ttbar production. The inclusive top quark pair production
cross-section is measured to be \sigmattbar=145 \pm 31 ^{+42}_{-27} pb where
the first uncertainty is statistical and the second systematic. The measurement
agrees with perturbative QCD calculations.Comment: 30 pages plus author list (50 pages total), 9 figures, 11 tables,
CERN-PH number and final journal adde
- …
