1,574 research outputs found
Mesoscopic Phase Fluctuations: General Phenomenon in Condensed Matter
General conditions for the occurrence of mesoscopic phase fluctuations in
condensed matter are considered. The description of different thermodynamic
phases, which coexist as a mixture of mesoscopically separated regions, is
based on the {\it theory of heterophase fluctuations}. The spaces of states,
typical of the related phases, are characterized by {\it weighted Hilbert
spaces}. Several models illustrate the main features of heterophase condensed
matter.Comment: 23 pages, Latex, no figure
Comparison of Bond Character in Hydrocarbons and Fullerenes
We present a comparison of the bond polarizabilities for carbon-carbon bonds
in hydrocarbons and fullerenes, using two different models for the fullerene
Raman spectrum and the results of Raman measurements on ethane and ethylene. We
find that the polarizabilities for single bonds in fullerenes and hydrocarbons
compare well, while the double bonds in fullerenes have greater polarizability
than in ethylene.Comment: 7 pages, no figures, uses RevTeX. (To appear in Phys. Rev. B.
Superdiffusivity of Finite-Range Asymmetric Exclusion Processes on
We consider finite-range asymmetric exclusion processes on with
non-zero drift. The diffusivity is expected to be of . We prove that in the weak (Tauberian) sense
that as . The proof employs the resolvent method to make a direct comparison with the
totally asymmetric simple exclusion process, for which the result is a
consequence of the scaling limit for the two-point function recently obtained
by Ferrari and Spohn. In the nearest neighbor case, we show further that
is monotone, and hence we can conclude that in the usual sense.Comment: Version 3. Statement of Theorem 3 is correcte
Theoretical investigations of a highly mismatched interface: the case of SiC/Si(001)
Using first principles, classical potentials, and elasticity theory, we
investigated the structure of a semiconductor/semiconductor interface with a
high lattice mismatch, SiC/Si(001). Among several tested possible
configurations, a heterostructure with (i) a misfit dislocation network pinned
at the interface and (ii) reconstructed dislocation cores with a carbon
substoichiometry is found to be the most stable one. The importance of the slab
approximation in first-principles calculations is discussed and estimated by
combining classical potential techniques and elasticity theory. For the most
stable configuration, an estimate of the interface energy is given. Finally,
the electronic structure is investigated and discussed in relation with the
dislocation array structure. Interface states, localized in the heterostructure
gap and located on dislocation cores, are identified
Hybridization of Surface Waves with Organic Adlayer Librations: A Helium Atom Scattering and Density Functional Perturbation Theory Study of Methyl-Si(111)
The interplay of the librations of a covalently bound organic adlayer with the lattice waves of an underlying semiconductor surface was characterized using helium atom scattering in conjunction with analysis by density functional perturbation teory. The Rayleigh wave dispersion relation of CH_(3)- and CD_(3)-terminated Si(111) surfaces was probed across the entire surface Brillouin zone by the use of inelastic helium atom time-of-flight experiments. The experimentally determined Rayleigh wave dispersion relations were in agreement with those predicted by density functional perturbation theory. The Rayleigh wave for the CH_(3)- and CD_(3)-terminated Si(111) surfaces exhibited a nonsinusoidal line shape, which can be attributed to the hybridization of overlayer librations with the vibrations of the underlying substrate. This combined synthetic, experimental, and theoretical effort clearly demonstrates the impact of hybridization between librations of the overlayer and the substrate lattice waves in determining the overall vibrational band structure of this complex interface
An ellipsoidal mirror for focusing neutral atomic and molecular beams
Manipulation of atomic and molecular beams is essential to atom optics applications including atom lasers, atom lithography, atom interferometry and neutral atom microscopy. The manipulation of charge-neutral beams of limited polarizability, spin or excitation states remains problematic, but may be overcome by the development of novel diffractive or reflective optical elements. In this paper, we present the first experimental demonstration of atom focusing using an ellipsoidal mirror. The ellipsoidal mirror enables stigmatic off-axis focusing for the first time and we demonstrate focusing of a beam of neutral, ground-state helium atoms down to an approximately circular spot, (26.8±0.5) μm×(31.4±0.8) μm in size. The spot area is two orders of magnitude smaller than previous reflective focusing of atomic beams and is a critical milestone towards the construction of a high-intensity scanning helium microscope
Operational strategies for mitigation of nitrous oxide emissions from a phase isolated fullscale WWTP
An ellipsoidal mirror for focusing neutral atomic and molecular beams
Manipulation of atomic and molecular beams is essential to atom optics applications including atom lasers, atom lithography, atom interferometry and neutral atom microscopy. The manipulation of charge-neutral beams of limited polarizability, spin or excitation states remains problematic, but may be overcome by the development of novel diffractive or reflective optical elements. In this paper, we present the first experimental demonstration of atom focusing using an ellipsoidal mirror. The ellipsoidal mirror enables stigmatic off-axis focusing for the first time and we demonstrate focusing of a beam of neutral, ground-state helium atoms down to an approximately circular spot, (26.8±0.5) μm×(31.4±0.8) μm in size. The spot area is two orders of magnitude smaller than previous reflective focusing of atomic beams and is a critical milestone towards the construction of a high-intensity scanning helium microscope
Sequential superradiant scattering from atomic Bose-Einstein condensates
We theoretically discuss several aspects of sequential superradiant
scattering from atomic Bose-Einstein condensates. Our treatment is based on the
semiclassical description of the process in terms of the Maxwell-Schroedinger
equations for the coupled matter-wave and optical fields. First, we investigate
sequential scattering in the weak-pulse regime and work out the essential
mechanisms responsible for bringing about the characteristic fan-shaped
side-mode distribution patterns. Second, we discuss the transition between the
Kapitza-Dirac and Bragg regimes of sequential scattering in the strong-pulse
regime. Finally, we consider the situation where superradiance is initiated by
coherently populating an atomic side mode through Bragg diffraction, as in
studies of matter-wave amplification, and describe the effect on the sequential
scattering process.Comment: 9 pages, 4 figures. Submitted to Proceedings of LPHYS'06 worksho
- …
