11,342 research outputs found

    Generic guide concepts for the European Spallation Source

    Full text link
    The construction of the European Spallation Source (ESS) faces many challenges from the neutron beam transport point of view: The spallation source is specified as being driven by a 5 MW beam of protons, each with 2 GeV energy, and yet the requirements in instrument background suppression relative to measured signal vary between 106^{-6} and 108^{-8}. The energetic particles, particularly above 20 MeV, which are expected to be produced in abundance in the target, have to be filtered in order to make the beamlines safe, operational and provide good quality measurements with low background. We present generic neutron guides of short and medium length instruments which are optimized for good performance at minimal cost. Direct line of sight to the source is avoided twice, with either the first point out of line of sight or both being inside the bunker (20\,m) to minimize shielding costs. These guide geometries are regarded as a baseline to define standards for instruments to be constructed at ESS. They are used to find commonalities and develop principles and solutions for common problems. Lastly, we report the impact of employing the over-illumination concept to mitigate losses from random misalignment passively, and that over-illumination should be used sparingly in key locations to be effective. For more widespread alignment issues, a more direct, active approach is likely to be needed

    Novel battery model of an all-electric personal rapid transit vehicle to determine state-of-health through subspace parameter estimation and a Kalman Estimator

    Get PDF
    Abstract--The paper describes a real-time adaptive battery model for use in an all-electric Personal Rapid Transit vehicle. Whilst traditionally, circuit-based models for lead-acid batteries centre on the well-known Randles’ model, here the Randles’ model is mapped to an equivalent circuit, demonstrating improved modelling capabilities and more accurate estimates of circuit parameters when used in Subspace parameter estimation techniques. Combined with Kalman Estimator algorithms, these techniques are demonstrated to correctly identify and converge on voltages associated with the battery State-of-Charge, overcoming problems such as SoC drift (incurred by coulomb-counting methods due to over-charging or ambient temperature fluctuations). Online monitoring of the degradation of these estimated parameters allows battery ageing (State-of-Health) to be assessed and, in safety-critical systems, cell failure may be predicted in time to avoid inconvenience to passenger networks. Due to the adaptive nature of the proposed methodology, this system can be implemented over a wide range of operating environments, applications and battery topologies

    Observer techniques for estimating the state-of-charge and state-of-health of VRLABs for hybrid electric vehicles

    Get PDF
    The paper describes the application of observer-based state-estimation techniques for the real-time prediction of state-of-charge (SoC) and state-of-health (SoH) of lead-acid cells. Specifically, an approach based on the well-known Kalman filter, is employed, to estimate SoC, and the subsequent use of the EKF to accommodate model non-linearities to predict battery SoH. The underlying dynamic behaviour of each cell is based on a generic Randles' equivalent circuit comprising of two-capacitors (bulk and surface) and three resistors, (terminal, transfer and self-discharging). The presented techniques are shown to correct for offset, drift and long-term state divergence-an unfortunate feature of employing stand-alone models and more traditional coulomb-counting techniques. Measurements using real-time road data are used to compare the performance of conventional integration-based methods for estimating SoC, with those predicted from the presented state estimation schemes. Results show that the proposed methodologies are superior with SoC being estimated to be within 1% of measured. Moreover, by accounting for the nonlinearities present within the dynamic cell model, the application of an EKF is shown to provide verifiable indications of SoH of the cell pack

    In-Beam Background Suppression Shield

    Get PDF
    The long (3ms) proton pulse of the European Spallation Source (ESS) gives rise to unique and potentially high backgrounds for the instrument suite. In such a source an instrument capabilities will be limited by it's Signal to Noise (S/N) ratio. The instruments with a direct view of the moderator, which do not use a bender to help mitigate the fast neutron background, are the most challenging. For these beam lines we propose the innovative shielding of placing blocks of material directly into the guide system, which allow a minimum attenuation of the cold and thermal fluxes relative to the background suppression. This shielding configuration has been worked into a beam line model using Geant4. We study particularly the advantages of single crystal sapphire and silicon blocks .Comment: 12 pages, 8 figures, proceeding of NDS 2015, 4th International Workshop on Neutron Delivery Systems, 28 -30 September 2015, ILL Grenoble, Franc

    State-of-charge and state-of-health prediction of lead-acid batteries for hybrid electric vehicles using non-linear observers

    Get PDF
    The paper describes the application of state-estimation techniques for the real-time prediction of state-of-charge (SoC) and state-of-health (SoH) of lead-acid cells. Approaches based on the extended Kalman filter (EKF) are presented to provide correction for offset, drift and state divergence - an unfortunate feature of more traditional coulomb-counting techniques. Experimental results are employed to demonstrate the relative attributes of the proposed methodolog

    Trapped ion scaling with pulsed fast gates

    Get PDF
    Fast entangling gates for trapped ions offer vastly improved gate operation times relative to implemented gates, as well as approaches to trap scaling. Gates on neighbouring ions only involve local ions when performed sufficiently fast, and we find that even a fast gate between distant ions with few degrees of freedom restores all the motional modes given more stringent gate speed conditions. We compare pulsed fast gate schemes, defined by a timescale faster than the trap period, and find that our proposed scheme has less stringent requirements on laser repetition rate for achieving arbitrary gate time targets and infidelities well below 10410^{-4}. By extending gate schemes to ion crystals, we explore the effect of ion number on gate fidelity for coupling neighbouring pairs of ions in large crystals. Inter-ion distance determines the gate time, and a factor of five increase in repetition rate, or correspondingly the laser power, reduces the infidelity by almost two orders of magnitude. We also apply our fast gate scheme to entangle the first and last ions in a crystal. As the number of ions in the crystal increases, significant increases in the laser power are required to provide the short gate times corresponding to fidelity above 0.99.Comment: 29 pages, 10 figure

    Fast gates for ion traps by splitting laser pulses

    Get PDF
    We present a fast phase gate scheme that is experimentally achievable and has an operation time more than two orders of magnitude faster than current experimental schemes for low numbers of pulses. The gate time improves with the number of pulses following an inverse power law. Unlike implemented schemes which excite precise motional sidebands, thus limiting the gate timescale, our scheme excites multiple motional states using discrete ultra-fast pulses. We use beam-splitters to divide pulses into smaller components to overcome limitations due to the finite laser pulse repetition rate. This provides gate times faster than proposed theoretical schemes when we optimise a practical setup.Comment: 20 pages, 8 figure

    Measurements and Monte-Carlo simulations of the particle self-shielding effect of B4C grains in neutron shielding concrete

    Full text link
    A combined measurement and Monte-Carlo simulation study was carried out in order to characterize the particle self-shielding effect of B4C grains in neutron shielding concrete. Several batches of a specialized neutron shielding concrete, with varying B4C grain sizes, were exposed to a 2 {\AA} neutron beam at the R2D2 test beamline at the Institute for Energy Technology located in Kjeller, Norway. The direct and scattered neutrons were detected with a neutron detector placed behind the concrete blocks and the results were compared to Geant4 simulations. The particle self-shielding effect was included in the Geant4 simulations by calculating effective neutron cross-sections during the Monte-Carlo simulation process. It is shown that this method well reproduces the measured results. Our results show that shielding calculations for low-energy neutrons using such materials would lead to an underestimate of the shielding required for a certain design scenario if the particle self-shielding effect is not included in the calculations.Comment: This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0

    Workshop - Amundsen Sea Embayment Tectonic and Glacial History - Programme and Abstracts

    Get PDF
    Overall Objective: Review existing data and identify priorities for future geoscience research (terrestrial, marine and airborne) in the Amundsen Sea embayment (ASE) region required to develop a better understanding of the past, present and future behaviour of this sector of the West Antarctic Ice Sheet (WAIS). Background: The ASE is the most rapidly changing sector of the WAIS and contains enough ice to raise global sea level by 1.2 m. Over the past few years considerable efforts have been made to acquire new data to improve knowledge of the geological structure, subglacial topography, continental shelf bathymetry and glacial history of this remote region. In this workshop we aim to review the current state of knowledge on the tectonic and glacial evolution of the Amundsen Sea embayment. Particular emphasis will be placed on work that will improve boundary conditions for ice sheet models (e.g. subglacial topography, shelf bathymetry, palaeotopography, heat flow and substrate types) and provide palaeo-data against which model outputs can be compared. There will also be a focus on plans and targets for future scientific drilling that will reveal the history of this sector of the WAIS and its sensitivity to major climate changes
    corecore