492 research outputs found

    Long waves over a bi-viscous seabed: transverse patterns

    Get PDF
    The coupled interaction of long standing hydrodynamic waves with a deformable non-Newtonian seabed is examined using a two-layer model for which the upper layer fluid is inviscid and the lower layer is bi-viscous. The two-dimensional response of the system to forcing by a predominantly longitudinal (cross-shore) standing wave perturbed by a small transverse (along-shore) component is determined. With a constant yield stress in the bi-viscous lower layer, there is little amplification of these transverse per-turbations and the model response typically remains quasi-one-dimensional. However, for a bi-viscous layer with a pressure-dependent yield stress (which represents the effect that the seabed deforms less readily under compression and hence renders the rheology history dependent), the initially small transverse motions are amplified in some parameter regimes and two-dimensional, permanent bedforms are formed in the lower layer. This simple dynamical model is, therefore, able to explain the formation of permanent bedforms with significant cross- and along-shore features by predominantly cross-shore standing wave forcing

    Melt-band instabilities with two-phase damage

    Get PDF
    Deformation experiments on partially molten rocks in simple shear form melt bands at 20◦ to the shear plane instead of at the expected 45◦ principal compressive stress direction. Thesemelt bands may play an important role in melt focusing in mid-ocean ridges. Such shallow bands are known to form for two-phase media under shear if strongly non-Newtonian power-law creep is employed for the solid phase, or anisotropy imposed. However laboratory experiments show that shallow bands occur regardless of creep mechanism, even in diffusion creep, which is nominally Newtonian. Here we propose that a couple of forms of two-phase damage allow for shallow melt bands even in diffusion creep.Support was provided by the National Science Foundation (NSF, grant EAR-1015229), the Natural Environment Research Council (NERC, grant NE/I023929/1) and Trinity College.This is the final published version. This article has been accepted for publication in Geophysical Journal International ©: 2015 the Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved

    Long waves over a bi-viscous seabed: transverse patterns

    No full text
    International audienceThe coupled interaction of long standing hydrodynamic waves with a deformable non-Newtonian seabed is examined using a two-layer model for which the upper layer fluid is inviscid and the lower layer is bi-viscous. The two-dimensional response of the system to forcing by a predominantly longitudinal (cross-shore) standing wave perturbed by a small transverse (along-shore) component is determined. With a constant yield stress in the bi-viscous lower layer, there is little amplification of these transverse per-turbations and the model response typically remains quasi-one-dimensional. However, for a bi-viscous layer with a pressure-dependent yield stress (which represents the effect that the seabed deforms less readily under compression and hence renders the rheology history dependent), the initially small transverse motions are amplified in some parameter regimes and two-dimensional, permanent bedforms are formed in the lower layer. This simple dynamical model is, therefore, able to explain the formation of permanent bedforms with significant cross- and along-shore features by predominantly cross-shore standing wave forcing

    Random matrix theory for CPA: Generalization of Wegner's nn--orbital model

    Full text link
    We introduce a generalization of Wegner's nn-orbital model for the description of randomly disordered systems by replacing his ensemble of Gaussian random matrices by an ensemble of randomly rotated matrices. We calculate the one- and two-particle Green's functions and the conductivity exactly in the limit nn\to\infty. Our solution solves the CPA-equation of the (n=1)(n=1)-Anderson model for arbitrarily distributed disorder. We show how the Lloyd model is included in our model.Comment: 3 pages, Rev-Te

    Geodynamo and mantle convection simulations on the Earth Simulator using the Yin-Yang grid

    Full text link
    We have developed finite difference codes based on the Yin-Yang grid for the geodynamo simulation and the mantle convection simulation. The Yin-Yang grid is a kind of spherical overset grid that is composed of two identical component grids. The intrinsic simplicity of the mesh configuration of the Yin-Yang grid enables us to develop highly optimized simulation codes on massively parallel supercomputers. The Yin-Yang geodynamo code has achieved 15.2 Tflops with 4096 processors on the Earth Simulator. This represents 46% of the theoretical peak performance. The Yin-Yang mantle code has enabled us to carry out mantle convection simulations in realistic regimes with a Rayleigh number of 10710^7 including strongly temperature-dependent viscosity with spatial contrast up to 10610^6.Comment: Plenary talk at SciDAC 200
    corecore