467 research outputs found
Vortices in a Thin Film Superconductor with a Spherical Geometry
We report results from Monte Carlo simulations of a thin film superconductor
in a spherical geometry within the lowest Landau level approximation. We
observe the absence of a phase transition to a low temperature vortex solid
phase with these boundary conditions; the system remains in the vortex liquid
phase for all accessible temperatures. The correlation lengths are measured for
phase coherence and density modulation. Both lengths display identical
temperature dependences, with an asymptotic scaling form consistent with a
continuous zero temperature transition. This contrasts with the first order
freezing transition which is seen in the alternative quasi-periodic boundary
conditions. The high temperature perturbation theory and the ground states of
the spherical system suggest that the thermodynamic limit of the spherical
geometry is the same as that on the flat plane. We discuss the advantages and
drawbacks of simulations with different geometries, and compare with current
experimental conclusions. The effect of having a large scale inhomogeneity in
the applied field is also considered.Comment: This replacment contains substantial revisions: the new article is
twice as long with new and different results on the thermodynamic limit on
the sphere plus a full discussion on the alternative boundary conditions used
in simulations in the LLL approximation. 19 pages, 12 encapsulated PostScript
figures, 1 JPEG figure, uses RevTeX (with epsf
Melting of two dimensional solids on disordered substrate
We study 2D solids with weak substrate disorder, using Coulomb gas
renormalisation. The melting transition is found to be replaced by a sharp
crossover between a high liquid with thermally induced dislocations, and a
low glassy regime with disorder induced dislocations at scales larger than
which we compute (, the Larkin and
translational correlation lengths). We discuss experimental consequences,
reminiscent of melting, such as size effects in vortex flow and AC response in
superconducting films.Comment: 4 pages, uses RevTeX, Amssymb, multicol,eps
Self-organized current transport through low angle grain boundaries in YBaCuO thin films, studied magnetometrically
The critical current density flowing across low angle grain boundaries in
YBaCuO thin films has been studied magnetometrically.
Films (200 nm thickness) were deposited on SrTiO bicrystal substrates
containing a single [001] tilt boundary, with angles of 2, 3, 5, and 7 degrees,
and the films were patterned into rings. Their magnetic moments were measured
in applied magnetic fields up to 30 kOe at temperatures of 5 - 95 K; current
densities of rings with or without grain boundaries were obtained from a
modified critical state model. For rings containing 5 and 7 degree boundaries,
the magnetic response depends strongly on the field history, which arises in
large part from self-field effects acting on the grain boundary.Comment: 8 pages, including 7 figure
Absence of the Transition into Abrikosov Vortex State of Two-Dimensional Type-II Superconductor with Weak Pinning
The resistive properties of thin amorphous NbO_{x} films with weak pinning
were investigated experimentally above and below the second critical field
H_{c2}. As opposed to bulk type II superconductors with weak pinning where a
sharp change of resistive properties at the transition into the Abrikosov state
is observed at H_{c4}, some percent below H_{c2} (V.A.Marchenko and
A.V.Nikulov, 1981), no qualitative change of resistive properties is observed
down to a very low magnetic field, H_{c4} < 0.006 H_{c2}, in thin films with
weak pinning. The smooth dependencies of the resistivity observed in these
films can be described by paraconductivity theory both above and below H_{c2}.
This means that the fluctuation superconducting state without phase coherence
remains appreciably below H_{c2} in the two-dimensional superconductor with
weak pinning. The difference the H_{c4}/H_{c2} values, i.e. position of the
transition into the Abrikosov state, in three- and two-dimensional
superconductors conforms to the Maki-Takayama result 1971 year according to
which the Abrikosov solution 1957 year is valid only for a superconductor with
finite dimensions. Because of the fluctuation this solution obtained in the
mean field approximation is not valid in a relatively narrow region below
H_{c2} for bulk superconductors with real dimensions and much below H_{c2} for
thin films with real dimensions. The superconducting state without phase
coherence should not be identified with the mythical vortex liquid because the
vortex, as a singularity in superconducting state with phase coherence, can not
exist without phase coherence.Comment: 4 pages, 4 figure
Order in driven vortex lattices in superconducting Nb films with nanostructured pinning potentials
Driven vortex lattices have been studied in a material with strong pinning,
such as Nb films. Samples in which natural random pinning coexists with
artificial ordered arrays of defects (submicrometric Ni dots) have been
fabricated with different geometries (square, triangular and rectangular).
Three different dynamic regimes are found: for low vortex velocities, there is
a plastic regime in which random defects frustrate the effect of the ordered
array; then, for vortex velocities in the range 1-100 m/s, there is a sudden
increase in the interaction between the vortex lattice and the ordered dot
array, independent on the geometry. This effect is associated to the onset of
quasi long range order in the vortex lattice leading to an increase in the
overlap between the vortex lattice and the magnetic dots array. Finally, at
larger velocities the ordered array-vortex lattice interaction is suppresed
again, in agreement with the behavior found in numerical simulations.Comment: 8 text pages + 4 figure
Phase diagrams of flux lattices with disorder
We review the prediction, made in a previous work [Phys. Rev. B 52 (1995)],
that the phase diagram of type II superconductors consists of a topologically
ordered Bragg glass phase at low fields undergoing a transition at higher
fields into a vortex glass or a liquid. We estimate the position of the phase
boundary using a Lindemann criterion. We find that the proposed phenomenology
is compatible with recent experiments on superconductors.Comment: 7 pages 2 figures, uses epsfi
Instabilities and disorder-driven first-order transition of the vortex lattice
Transport studies in a Corbino disk geometry suggest that the Bragg glass
phase undergoes a first-order transition into a disordered solid. This
transition shows a sharp reentrant behavior at low fields. In contrast, in the
conventional strip configuration, the phase transition is obscured by the
injection of the disordered vortices through the sample edges, which results in
the commonly observed vortex instabilities and smearing of the peak effect in
NbSe2 crystals. These features are found to be absent in the Corbino geometry,
in which the circulating vortices do not cross the sample edges.Comment: 12 pages 3 figures. Accepted for publication in Physical Review
Letter
Is there a Phase Transition to the Flux Lattice State?
The sharp drops in the resistance and magnetization which are usually
attributed to a phase transition from the vortex liquid state to a crystal
state are explained instead as a crossover between three and two dimensional
behavior, which occurs when the phase coherence length in the liquid becomes
comparable to the sample thickness. Estimates of the width of the crossover
region and the phase coherence length scales are in agreement with experiment.Comment: 4 pages, RevTe
Moving glass theory of driven lattices with disorder
We study periodic structures, such as vortex lattices, moving in a random
potential. As predicted in [T. Giamarchi, P. Le Doussal Phys. Rev. Lett. 76
3408 (1996)] the periodicity in the direction transverse to motion leads to a
new class of driven systems: the Moving Glasses. We analyse using several RG
techniques the properties at T=0 and : (i) decay of translational long
range order (ii) particles flow along static channels (iii) the channel pattern
is highly correlated (iv) barriers to transverse motion. We demonstrate the
existence of the ``transverse critical force'' at T=0. A ``static random
force'' is shown to be generated by motion. Displacements grow logarithmically
in and algebraically in . The persistence of quasi long range
translational order in at weak disorder, or large velocity leads to
predict a topologically ordered ``Moving Bragg Glass''. This state continues
the static Bragg glass and is stable at , with non linear transverse
response and linear asymptotic behavior. In , or in at intermediate
disorder, another moving glass exist (the Moving Transverse Glass) with smectic
quasi order in the transverse direction. A phase diagram in force and
disorder for static and moving structures is proposed. For correlated disorder
we predict a ``moving Bose glass'' state with anisotropic transverse Meissner
effect and transverse pinning. We discuss experimental consequences such as
anomalous Hall effect in Wigner crystal and transverse critical current in
vortex lattice.Comment: 74 pages, 27 figures, RevTe
- …
