1,602 research outputs found
Sound propagation over uneven ground and irregular topography
The goal of this research is to develop theoretical, computational, and experimental techniques for predicting the effects of irregular topography on long range sound propagation in the atmosphere. Irregular topography here is understood to imply a ground surface that is not idealizable as being perfectly flat or that is not idealizable as having a constant specific acoustic impedance. The interest of this study focuses on circumstances where the propagation is similar to what might be expected for noise from low-attitude air vehicles flying over suburban or rural terrain, such that rays from the source arrive at angles close to grazing incidence. The activities and developments that have resulted during the period, August 1986 through February 1987, are discussed
Sound propagation over uneven ground and irregular topography
The acoustic impedance of the surface coverings used in the laboratory experiments on sound diffraction by topographical ridges was determined. The model, which was developed, takes into account full wave effects and the possibility of surface waves and predicts the sound pressure level at the receiver location relative to what would be expected if the flat surface were not present. The sound pressure level can be regarded as a function of frequency, sound speed in air, heights of source and receiver, and horizontal distance from source to receiver, as well as the real and imaginary parts of the surface impedance
Sound propagation over uneven ground and irregular topography
Theoretical, computational, and experimental techniques were developed for predicting the effects of irregular topography on long range sound propagation in the atmosphere. Irregular topography is understood to imply a ground surface that: (1) is not idealizable as being perfectly flat, or (2) that is not idealizable as having a constant specific acoustic impedance. The focus is on circumstances where the propagation is similar to what might be expected for noise from low altitude air vehicles flying over suburban or rural terrain, such that rays from the source arrive at angles close to grazing incidence
Ice Formation on Kaolinite: Insights from Molecular Dynamics Simulations
The formation of ice affects many aspects of our everyday life as well as
technologies such as cryotherapy and cryopreservation. Foreign substances
almost always aid water freezing through heterogeneous ice nucleation, but the
molecular details of this process remain largely unknown. In fact, insight into
the microscopic mechanism of ice formation on different substrates is difficult
to obtain even via state-of-the-art experimental techniques. At the same time,
atomistic simulations of heterogeneous ice nucleation frequently face
extraordinary challenges due to the complexity of the water-substrate
interaction and the long timescales that characterize nucleation events. Here,
we have investigated several aspects of molecular dynamics simulations of
heterogeneous ice nucleation considering as a prototypical ice nucleating
material the clay mineral kaolinite, which is of relevance in atmospheric
science. We show via seeded molecular dynamics simulations that ice nucleation
on the hydroxylated (001) face of kaolinite proceeds exclusively via the
formation of the hexagonal ice polytype. The critical nucleus size is two times
smaller than that obtained for homogeneous nucleation at the same supercooling.
Previous findings suggested that the flexibility of the kaolinite surface can
alter the time scale for ice nucleation within molecular dynamics simulations.
However, we here demonstrate that equally flexible (or non flexible) kaolinite
surfaces can lead to very different outcomes in terms of ice formation,
according to whether or not the surface relaxation of the clay is taken into
account. We show that very small structural changes upon relaxation
dramatically alter the ability of kaolinite to provide a template for the
formation of a hexagonal overlayer of water molecules at the water-kaolinite
interface, and that this relaxation therefore determines the nucleation ability
of this mineral
Stringy K-theory and the Chern character
For a finite group G acting on a smooth projective variety X, we construct
two new G-equivariant rings: first the stringy K-theory of X, and second the
stringy cohomology of X. For a smooth Deligne-Mumford stack Y we also construct
a new ring called the full orbifold K-theory of Y. For a global quotient
Y=[X/G], the ring of G-invariants of the stringy K-theory of X is a subalgebra
of the full orbifold K-theory of the the stack Y and is linearly isomorphic to
the ``orbifold K-theory'' of Adem-Ruan (and hence Atiyah-Segal), but carries a
different, ``quantum,'' product, which respects the natural group grading. We
prove there is a ring isomorphism, the stringy Chern character, from stringy
K-theory to stringy cohomology, and a ring homomorphism from full orbifold
K-theory to Chen-Ruan orbifold cohomology. These Chern characters satisfy
Grothendieck-Riemann-Roch for etale maps.
We prove that stringy cohomology is isomorphic to Fantechi and Goettsche's
construction. Since our constructions do not use complex curves, stable maps,
admissible covers, or moduli spaces, our results simplify the definitions of
Fantechi-Goettsche's ring, of Chen-Ruan's orbifold cohomology, and of
Abramovich-Graber-Vistoli's orbifold Chow.
We conclude by showing that a K-theoretic version of Ruan's Hyper-Kaehler
Resolution Conjecture holds for symmetric products.
Our results hold both in the algebro-geometric category and in the
topological category for equivariant almost complex manifolds.Comment: Exposition improved and additional details provided. To appear in
Inventiones Mathematica
A Search for various Double Beta Decay Modes of Cd, Te and Zn Isotopes
Various double beta decay modes of Cd, Zn and Te isotopes are explored with
the help of CdTe and CdZnTe semiconductor detectors. The data set is splitted
in an energy range below 1 MeV having a statistics of 134.5 gd and one
above 1 MeV resulting in 532 gd. No signals were observed in all
channels under investigation. New improved limits for the neutrinoless double
beta decay of Zn70 of (90% CL), the longest
standing limit of all double beta isotopes, and 0EC of Te120 of
(90% CL) are given. For the first time a
limit on the half-life of the 2ECEC of Te of (90% CL) is obtained. In addition, limits on 2ECEC for ground
state transitions of Cd106, Cd108 and Zn64 are improved. The obtained results
even under rough background conditions show the reliability of CdTe
semiconductor detectors for rare nuclear decay searches.Comment: Extended introduction and summar
Geometric Phantom Categories
In this paper we give a construction of phantom categories, i.e. admissible
triangulated subcategories in bounded derived categories of coherent sheaves on
smooth projective varieties that have trivial Hochschild homology and trivial
Grothendieck group. We also prove that these phantom categories are phantoms in
a stronger sense, namely, they have trivial K-motives and, hence, all their
higher K-groups are trivial too.Comment: LaTeX, 18 page
Enhanced sequential carrier capture into individual quantum dots and quantum posts controlled by surface acoustic waves
Individual self-assembled Quantum Dots and Quantum Posts are studied under
the influence of a surface acoustic wave. In optical experiments we observe an
acoustically induced switching of the occupancy of the nanostructures along
with an overall increase of the emission intensity. For Quantum Posts,
switching occurs continuously from predominantely charged excitons (dissimilar
number of electrons and holes) to neutral excitons (same number of electrons
and holes) and is independent on whether the surface acoustic wave amplitude is
increased or decreased. For quantum dots, switching is non-monotonic and shows
a pronounced hysteresis on the amplitude sweep direction. Moreover, emission of
positively charged and neutral excitons is observed at high surface acoustic
wave amplitudes. These findings are explained by carrier trapping and
localization in the thin and disordered two-dimensional wetting layer on top of
which Quantum Dots nucleate. This limitation can be overcome for Quantum Posts
where acoustically induced charge transport is highly efficient in a wide
lateral Matrix-Quantum Well.Comment: 11 pages, 5 figure
Good reductions of Shimura varieties of Hodge type in arbitrary unramified mixed characteristic. Part I
We prove the existence of good smooth integral models of Shimura varieties of
Hodge type in arbitrary unramified mixed characteristic . As a first
application we provide a smooth solution (answer) to a conjecture (question) of
Langlands for Shimura varieties of Hodge type. As a second application we prove
the existence in arbitrary unramified mixed characteristic of integral
canonical models of projective Shimura varieties of Hodge type with respect to
h--hyperspecial subgroups as pro-\'etale covers of N\'eron models; this forms
progress towards the proof of conjectures of Milne and Reimann. Though the
second application was known before in some cases, its proof is new and more of
a principle.Comment: 87 pages. Final version, to appear in Mathematische Nachrichten (most
alignment issues kept loose to match with the layout of the journal
- …
