1,602 research outputs found

    Sound propagation over uneven ground and irregular topography

    Get PDF
    The goal of this research is to develop theoretical, computational, and experimental techniques for predicting the effects of irregular topography on long range sound propagation in the atmosphere. Irregular topography here is understood to imply a ground surface that is not idealizable as being perfectly flat or that is not idealizable as having a constant specific acoustic impedance. The interest of this study focuses on circumstances where the propagation is similar to what might be expected for noise from low-attitude air vehicles flying over suburban or rural terrain, such that rays from the source arrive at angles close to grazing incidence. The activities and developments that have resulted during the period, August 1986 through February 1987, are discussed

    Sound propagation over uneven ground and irregular topography

    Get PDF
    The acoustic impedance of the surface coverings used in the laboratory experiments on sound diffraction by topographical ridges was determined. The model, which was developed, takes into account full wave effects and the possibility of surface waves and predicts the sound pressure level at the receiver location relative to what would be expected if the flat surface were not present. The sound pressure level can be regarded as a function of frequency, sound speed in air, heights of source and receiver, and horizontal distance from source to receiver, as well as the real and imaginary parts of the surface impedance

    Sound propagation over uneven ground and irregular topography

    Get PDF
    Theoretical, computational, and experimental techniques were developed for predicting the effects of irregular topography on long range sound propagation in the atmosphere. Irregular topography is understood to imply a ground surface that: (1) is not idealizable as being perfectly flat, or (2) that is not idealizable as having a constant specific acoustic impedance. The focus is on circumstances where the propagation is similar to what might be expected for noise from low altitude air vehicles flying over suburban or rural terrain, such that rays from the source arrive at angles close to grazing incidence

    Ice Formation on Kaolinite: Insights from Molecular Dynamics Simulations

    Get PDF
    The formation of ice affects many aspects of our everyday life as well as technologies such as cryotherapy and cryopreservation. Foreign substances almost always aid water freezing through heterogeneous ice nucleation, but the molecular details of this process remain largely unknown. In fact, insight into the microscopic mechanism of ice formation on different substrates is difficult to obtain even via state-of-the-art experimental techniques. At the same time, atomistic simulations of heterogeneous ice nucleation frequently face extraordinary challenges due to the complexity of the water-substrate interaction and the long timescales that characterize nucleation events. Here, we have investigated several aspects of molecular dynamics simulations of heterogeneous ice nucleation considering as a prototypical ice nucleating material the clay mineral kaolinite, which is of relevance in atmospheric science. We show via seeded molecular dynamics simulations that ice nucleation on the hydroxylated (001) face of kaolinite proceeds exclusively via the formation of the hexagonal ice polytype. The critical nucleus size is two times smaller than that obtained for homogeneous nucleation at the same supercooling. Previous findings suggested that the flexibility of the kaolinite surface can alter the time scale for ice nucleation within molecular dynamics simulations. However, we here demonstrate that equally flexible (or non flexible) kaolinite surfaces can lead to very different outcomes in terms of ice formation, according to whether or not the surface relaxation of the clay is taken into account. We show that very small structural changes upon relaxation dramatically alter the ability of kaolinite to provide a template for the formation of a hexagonal overlayer of water molecules at the water-kaolinite interface, and that this relaxation therefore determines the nucleation ability of this mineral

    Stringy K-theory and the Chern character

    Full text link
    For a finite group G acting on a smooth projective variety X, we construct two new G-equivariant rings: first the stringy K-theory of X, and second the stringy cohomology of X. For a smooth Deligne-Mumford stack Y we also construct a new ring called the full orbifold K-theory of Y. For a global quotient Y=[X/G], the ring of G-invariants of the stringy K-theory of X is a subalgebra of the full orbifold K-theory of the the stack Y and is linearly isomorphic to the ``orbifold K-theory'' of Adem-Ruan (and hence Atiyah-Segal), but carries a different, ``quantum,'' product, which respects the natural group grading. We prove there is a ring isomorphism, the stringy Chern character, from stringy K-theory to stringy cohomology, and a ring homomorphism from full orbifold K-theory to Chen-Ruan orbifold cohomology. These Chern characters satisfy Grothendieck-Riemann-Roch for etale maps. We prove that stringy cohomology is isomorphic to Fantechi and Goettsche's construction. Since our constructions do not use complex curves, stable maps, admissible covers, or moduli spaces, our results simplify the definitions of Fantechi-Goettsche's ring, of Chen-Ruan's orbifold cohomology, and of Abramovich-Graber-Vistoli's orbifold Chow. We conclude by showing that a K-theoretic version of Ruan's Hyper-Kaehler Resolution Conjecture holds for symmetric products. Our results hold both in the algebro-geometric category and in the topological category for equivariant almost complex manifolds.Comment: Exposition improved and additional details provided. To appear in Inventiones Mathematica

    A Search for various Double Beta Decay Modes of Cd, Te and Zn Isotopes

    Full text link
    Various double beta decay modes of Cd, Zn and Te isotopes are explored with the help of CdTe and CdZnTe semiconductor detectors. The data set is splitted in an energy range below 1 MeV having a statistics of 134.5 g\cdotd and one above 1 MeV resulting in 532 g\cdotd. No signals were observed in all channels under investigation. New improved limits for the neutrinoless double beta decay of Zn70 of T1/2>1.31016yrsT_{1/2} > 1.3 \cdot 10^{16} yrs (90% CL), the longest standing limit of all double beta isotopes, and 0νβ+\nu\beta^+EC of Te120 of T1/2>2.21016yrsT_{1/2} > 2.2 \cdot 10^{16} yrs (90% CL) are given. For the first time a limit on the half-life of the 2ν\nuECEC of 120^{120}Te of T1/2>9.41015yrsT_{1/2} > 9.4 \cdot 10^{15} yrs (90% CL) is obtained. In addition, limits on 2ν\nuECEC for ground state transitions of Cd106, Cd108 and Zn64 are improved. The obtained results even under rough background conditions show the reliability of CdTe semiconductor detectors for rare nuclear decay searches.Comment: Extended introduction and summar

    Geometric Phantom Categories

    Get PDF
    In this paper we give a construction of phantom categories, i.e. admissible triangulated subcategories in bounded derived categories of coherent sheaves on smooth projective varieties that have trivial Hochschild homology and trivial Grothendieck group. We also prove that these phantom categories are phantoms in a stronger sense, namely, they have trivial K-motives and, hence, all their higher K-groups are trivial too.Comment: LaTeX, 18 page

    Enhanced sequential carrier capture into individual quantum dots and quantum posts controlled by surface acoustic waves

    Full text link
    Individual self-assembled Quantum Dots and Quantum Posts are studied under the influence of a surface acoustic wave. In optical experiments we observe an acoustically induced switching of the occupancy of the nanostructures along with an overall increase of the emission intensity. For Quantum Posts, switching occurs continuously from predominantely charged excitons (dissimilar number of electrons and holes) to neutral excitons (same number of electrons and holes) and is independent on whether the surface acoustic wave amplitude is increased or decreased. For quantum dots, switching is non-monotonic and shows a pronounced hysteresis on the amplitude sweep direction. Moreover, emission of positively charged and neutral excitons is observed at high surface acoustic wave amplitudes. These findings are explained by carrier trapping and localization in the thin and disordered two-dimensional wetting layer on top of which Quantum Dots nucleate. This limitation can be overcome for Quantum Posts where acoustically induced charge transport is highly efficient in a wide lateral Matrix-Quantum Well.Comment: 11 pages, 5 figure

    Good reductions of Shimura varieties of Hodge type in arbitrary unramified mixed characteristic. Part I

    Get PDF
    We prove the existence of good smooth integral models of Shimura varieties of Hodge type in arbitrary unramified mixed characteristic (0,p)(0,p). As a first application we provide a smooth solution (answer) to a conjecture (question) of Langlands for Shimura varieties of Hodge type. As a second application we prove the existence in arbitrary unramified mixed characteristic (0,p)(0,p) of integral canonical models of projective Shimura varieties of Hodge type with respect to h--hyperspecial subgroups as pro-\'etale covers of N\'eron models; this forms progress towards the proof of conjectures of Milne and Reimann. Though the second application was known before in some cases, its proof is new and more of a principle.Comment: 87 pages. Final version, to appear in Mathematische Nachrichten (most alignment issues kept loose to match with the layout of the journal
    corecore