9,155 research outputs found

    Observation of a Narrow Resonance of Mass 2.46 GeV/c^2 in the D_s^*+\pi^0 Final State, and Confirmation of the D_sJ^*(2317)

    Full text link
    Using 13.5 fb^{-1} of e^+e^- annihilation data collected with the CLEO-II detector, we have observed a new narrow resonance in the D_s^*\pi^0 final state, with a mass near 2.46 GeV/c^2. The search for such a state was motivated by the recent discovery by the BaBar Collaboration of a narrow state at 2.32 GeV/c^2, the D_{sJ}^*(2317)^+, that decays to D_s\pi^0. Reconstructing the D_s\pi^0 and D_s^*\pi^0 final states in CLEO data, we observe a peak in each of the corresponding reconstructed mass difference distributions, \Delta M_{D_s\pi^0} = M(D_s\pi^0) - M(D_s) and \Delta M_{D_s^*\pi^0} = M(D_s^*\pi^0) - M(D_s^*), both of them at values around 350 MeV/c^2. These peaks constitute statistically significant evidence for two distinct states, at 2.32 and 2.46 GeV/c^2, taking into account the background source that each state comprises for the other in light of the nearly identical values of \Delta M observed for the two peaks. We have measured the mean mass differences \Delta M_{D_s\pi^0} = 350.4 \pm 1.2[stat.] \pm 1.0 [syst.] MeV/c^2 for the DsJ(2317)+D_{sJ}^*(2317)^+ state, and \Delta M_{D_s^*\pi^0} = 351.6 \pm 1.7[stat.] \pm 1.0 [syst.] MeV/c^2 for the new state at 2.46 GeV/c^2. We have also searched, but find no evidence, for decays of D_{sJ}^*(2317) into the alternate final states D_s^*\gamma, D_s\gamma, and D_s\pi^+\pi^-. The observations of the two states at 2.32 and 2.46 GeV/c^2, in the D_s\pi^0 and D_s^*\pi^0 decay channels respectively, are consistent with their possible interpretations as c s-bar mesons with orbital angular momentum L=1, and spin-parity J^P = 0^+ and 1^+.Comment: 12 pages postscript, Updated Author List, also available through http://w4.lns.cornell.edu/public/CLNS, submitted to 8th CIPANP May 200

    Measurement of sigma_Total in e+e- Annihilations Below 10.56 GeV

    Full text link
    Using the CLEO III detector, we measure absolute cross sections for e+e- -> hadrons at seven center-of-mass energies between 6.964 and 10.538 GeV. R, the ratio of hadronic and muon pair production cross sections, is measured at these energies with a r.m.s. error <2% allowing determinations of the strong coupling alpha_s. Using the expected evolution of alpha_s with energy we find alpha_s(M_Z^2)=0.126 +/- 0.005 ^{+0.015}_{-0.011}, and Lambda=0.31^{+0.09+0.29}_{-0.08-0.21}.Comment: Comments: Presented at "The 2007 Europhysics Conference on High Energy Physics," Manchester, England, 19-25 July 2007, to appear in the proceedings. Three pages, 1 figur

    Simulation of a Hybrid Optical/Radio/Acoustic Extension to IceCube for EeV Neutrino Detection

    Full text link
    Astrophysical neutrinos at \simEeV energies promise to be an interesting source for astrophysics and particle physics. Detecting the predicted cosmogenic (``GZK'') neutrinos at 1016^{16} - 1020^{20} eV would test models of cosmic ray production at these energies and probe particle physics at \sim100 TeV center-of-mass energy. While IceCube could detect \sim1 GZK event per year, it is necessary to detect 10 or more events per year in order to study temporal, angular, and spectral distributions. The IceCube observatory may be able to achieve such event rates with an extension including optical, radio, and acoustic receivers. We present results from simulating such a hybrid detector.Comment: 4 pages, 2 figures; to appear in the Proceedings of the 29th ICRC, Pune, Indi

    Charm meson resonances in DPνD \to P \ell \nu decays

    Full text link
    Motivated by recent experimental results we reconsider semileptonic DPνD \to P \ell \nu_{\ell} decays within a model which combines heavy quark symmetry and properties of the chiral Lagrangian. We include excited charm meson states, some of them recently observed, in our Lagrangian and determine their impact on the charm meson semileptonic form factors. We find that the inclusion of excited charm meson states in the model leads to a rather good agreement with the experimental results on the q2q^2 shape of the F+(q2)F_+(q^2) form factor. We also calculate branching ratios for all DPνD \to P \ell \nu_{\ell} decays.Comment: 9 pages, 4 figures; minor corrections, added some discussion, version as publishe

    Addendum to "Coherent radio pulses from GEANT generated electromagnetic showers in ice"

    Full text link
    We reevaluate our published calculations of electromagnetic showers generated by GEANT 3.21 and the radio frequency pulses they produce in ice. We are prompted by a recent report showing that GEANT 3.21-modeled showers are sensitive to internal settings in the electron tracking subroutine. We report the shower and pulse characteristics obtained with different settings of GEANT 3.21 and with GEANT 4. The default setting of electron tracking in GEANT 3.21 we used in previous work speeds up the shower simulation at the cost of information near the end of the tracks. We find that settings tracking electron and positron to lower energy yield a more accurate calculation, a more intense shower, and proportionately stronger radio pulses at low frequencies. At high frequencies the relation between shower tracking algorithm and pulse spectrum is more complex. We obtain radial distributions of shower particles and phase distributions of pulses from 100 GeV showers that are consistent with our published results.Comment: 4 pages, 3 figure
    corecore