138 research outputs found
Enzymatic synthesis of vitamin B6 precursor
3-Cyano-4-ethoxymethyl-6-methyl-2-pyridone is an important precursor in the
synthesis of vitamin B6, obtained in the addition reaction between
2-cyanoacetamide and 1-ethoxy-2,4-pentanedione catalyzed by lipase from
Candida rugosa (triacylglycerol ester hydrolases, EC 3.1.1.3). This work
shows new experimental data and mathematical modeling of lipase catalyzed
synthesis of 3-cyano-4-ethoxymethyl-6-methyl-2-pyridone, starting from
1-ethoxy-2,4-pentanedione and 2-cyanoacetamide. Kinetic measurements were
done at 50 oC with enzyme concentration of 1.2 % w/v. Experimental results
were fitted with two kinetic models: the ordered bi-ter and ping-pong bi-ter
model, and the initial rates of the reaction were found to correlate best
with a ping-pong bi-ter mechanism with inhibition by 2-cyanoacetamide.
Obtained specificity constants indicated that lipase from C. rugosa had
higher affinity towards 1-ethoxy-2,4-pentanedione and less bulky substrates.
[Projekat Ministarstva nauke Republike Srbije, br. 172013, br. III 46010 and
br. 172049
Interleukin-1β maturation triggers its relocation to the plasma membrane for gasdermin-D-dependent and -independent secretion
IL-1β requires processing by caspase-1 to generate the active, pro-inflammatory cytokine. Acute IL-1β secretion from inflammasome-activated macrophages requires caspase-1-dependent GSDMD cleavage, which also induces pyroptosis. Mechanisms of IL-1β secretion by pyroptotic and non-pyroptotic cells, and the precise functions of caspase-1 and GSDMD therein, are unresolved. Here, we show that, while efficient early secretion of endogenous IL-1β from primary non-pyroptotic myeloid cells in vitro requires GSDMD, later IL-1β release in vitro and in vivo proceeds independently of GSDMD. IL-1β maturation is sufficient for slow, caspase-1/GSDMD-independent secretion of ectopic IL-1β from resting, non-pyroptotic macrophages, but the speed of IL-1β release is boosted by inflammasome activation, via caspase-1 and GSDMD. IL-1β cleavage induces IL-1β enrichment at PIP2-enriched plasma membrane ruffles, and this is a prerequisite for IL-1β secretion and is mediated by a polybasic motif within the cytokine. We thus reveal a mechanism in which maturation-induced IL-1β trafficking facilitates its unconventional secretion
Use of Candida rugosa lipase immobilized on sepabeads for the amyl caprylate synthesis: Batch and fluidized bed reactor study
Lipase from Candida rugosa was covalently immobilized on Sepabeads
EC-EP for application for amyl caprylate synthesis in an organic
solvent system. Several solvents were tested in terms of biocatalyst
stability and the best result was obtained with isooctane. The
lipase-catalyzed esterification in the selected system was performed in
batch and fluidized bed reactor systems. The influence of several
important reaction parameters including temperature, initial water
content, enzyme loading, acid/alcohol molar ratio, and time of addition
of molecular sieves is carefully analyzed by means of an experimental
design. Almost complete conversion (> 99%) of the substrate to ester
could be performed in a batch reactor system, using lipase loading as
low as 37 mg g-1 dry support and in a relatively short time (24 hrs) at
37\ub0C, when high initial substrate molar ratio of 2.2 is used.
Kinetics in a fluidized bed reactor system seems to still have a
slightly better profile than in the batch system (90.2% yields after 14
hrs). The fluidized bed reactor operated for up 70 hrs almost with no
loss in productivity, implying that the proposed process and the
immobilized system could provide a promising approach for the amyl
caprylate synthesis at the industrial scale
Evaluation of Biologically Active Compounds from Calendula officinalis Flowers using Spectrophotometry
<p>Abstract</p> <p>Background</p> <p>This study aimed to quantify the active biological compounds in <it>C. officinalis </it>flowers. Based on the active principles and biological properties of marigolds flowers reported in the literature, we sought to obtain and characterize the molecular composition of extracts prepared using different solvents. The antioxidant capacities of extracts were assessed by using spectrophotometry to measure both absorbance of the colorimetric free radical scavenger 2,2-diphenyl-1-picrylhydrazyl (DPPH) as well as the total antioxidant potential, using the ferric reducing power (FRAP) assay.</p> <p>Results</p> <p>Spectrophotometric assays in the ultraviolet-visible (UV-VIS) region enabled identification and characterization of the full range of phenolic and flavonoids acids, and high-performance liquid chromatography (HPLC) was used to identify and quantify phenolic compounds (depending on the method of extraction). Methanol ensured more efficient extraction of flavonoids than the other solvents tested.</p> <p>Antioxidant activity in methanolic extracts was correlated with the polyphenol content.</p> <p>Conclusions</p> <p>The UV-VIS spectra of assimilator pigments (e.g. chlorophylls), polyphenols and flavonoids extracted from the <it>C. officinalis </it>flowers consisted in quantitative evaluation of compounds which absorb to wavelengths broader than 360 nm.</p
Spleen-Resident CD4+ and CD4− CD8α− Dendritic Cell Subsets Differ in Their Ability to Prime Invariant Natural Killer T Lymphocytes
One important function of conventional dendritic cells (cDC) is their high capacity to capture, process and present Ag to T lymphocytes. Mouse splenic cDC subtypes, including CD8α+ and CD8α− cDC, are not identical in their Ag presenting and T cell priming functions. Surprisingly, few studies have reported functional differences between CD4− and CD4+ CD8α− cDC subsets. We show that, when loaded in vitro with OVA peptide or whole protein, and in steady-state conditions, splenic CD4− and CD4+ cDC are equivalent in their capacity to prime and direct CD4+ and CD8+ T cell differentiation. In contrast, in response to α-galactosylceramide (α-GalCer), CD4− and CD4+ cDC differentially activate invariant Natural Killer T (iNKT) cells, a population of lipid-reactive non-conventional T lymphocytes. Both cDC subsets equally take up α-GalCer in vitro and in vivo to stimulate the iNKT hybridoma DN32.D3, the activation of which depends solely on TCR triggering. On the other hand, and relative to their CD4+ counterparts, CD4− cDC more efficiently stimulate primary iNKT cells, a phenomenon likely due to differential production of co-factors (including IL-12) by cDC. Our data reveal a novel functional difference between splenic CD4+ and CD4− cDC subsets that may be important in immune responses
Human Natural Killer T Cells Are Heterogeneous in Their Capacity to Reprogram Their Effector Functions
BACKGROUND: Natural killer T (NKT) cells are a subset of T cells that help potentiate and regulate immune responses. Although human NKT cell subsets with distinct effector functions have been identified, it is unclear whether the effector functions of these subsets are imprinted during development or can be selectively reprogrammed in the periphery. RESULTS: We found that neonatal NKT cells are predominantly CD4+ and express higher levels of CCR7 and CD62L and lower levels of CD94 and CD161 than adult CD4+ or CD4− NKT cell subsets. Accordingly, neonatal NKT cells were more flexible than adult CD4+ NKT cells in their capacity to acquire Th1- or Th2-like functions upon either cytokine-mediated polarization or ectopic expression of the Th1 or Th2 transcription factors T-bet and GATA-3, respectively. Consistent with their more differentiated phenotype, CD4- NKT cells were predominantly resistant to functional reprogramming and displayed higher cytotoxic function. In contrast to conventional T cells, neither the expression of CXCR3 nor the cytotoxic capacity of neonatal NKT cells could be reprogrammed. CONCLUSIONS AND SIGNIFICANCE: Together, these results suggest that neonatal CD4+, adult CD4+, and adult CD4− NKT may represent unique states of maturation and that some functions of human NKT cells may be developmentally imprinted, while others are acquired similar to conventional T cell subsets during peripheral maturation and differentiation. Given the potent immuno-regulatory functions of NKT cells, these findings have important implications for the development of novel NKT cell-based therapeutics and vaccines
Characterization of the avian trojan gene family reveals contrasting evolutionary constraints
"Trojan" is a leukocyte-specific, cell surface protein originally identified in the chicken. Its molecular function has been hypothesized to be related to anti-apoptosis and the proliferation of immune cells. The Trojan gene has been localized onto the Z sex chromosome. The adjacent two genes also show significant homology to Trojan, suggesting the existence of a novel gene/protein family. Here, we characterize this Trojan family, identify homologues in other species and predict evolutionary constraints on these genes. The two Trojan-related proteins in chicken were predicted as a receptor-type tyrosine phosphatase and a transmembrane protein, bearing a cytoplasmic immuno-receptor tyrosine-based activation motif. We identified the Trojan gene family in ten other bird species and found related genes in three reptiles and a fish species. The phylogenetic analysis of the homologues revealed a gradual diversification among the family members. Evolutionary analyzes of the avian genes predicted that the extracellular regions of the proteins have been subjected to positive selection. Such selection was possibly a response to evolving interacting partners or to pathogen challenges.We also observed an almost complete lack of intracellular positively selected sites, suggesting a conserved signaling mechanism of the molecules. Therefore, the contrasting patterns of selection likely correlate with the interaction and signaling potential of the molecules
- …
