163 research outputs found
Inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase by mevinolin in familial hypercholesterolemia heterozygotes: effects on cholesterol balance.
History of clinical transplantation
How transplantation came to be a clinical discipline can be pieced together by perusing two volumes of reminiscences collected by Paul I. Terasaki in 1991-1992 from many of the persons who were directly involved. One volume was devoted to the discovery of the major histocompatibility complex (MHC), with particular reference to the human leukocyte antigens (HLAs) that are widely used today for tissue matching.1 The other focused on milestones in the development of clinical transplantation.2 All the contributions described in both volumes can be traced back in one way or other to the demonstration in the mid-1940s by Peter Brian Medawar that the rejection of allografts is an immunological phenomenon.3,4 © 2008 Springer New York
History of clinical transplantation
The emergence of transplantation has seen the development of increasingly potent immunosuppressive agents, progressively better methods of tissue and organ preservation, refinements in histocompatibility matching, and numerous innovations is surgical techniques. Such efforts in combination ultimately made it possible to successfully engraft all of the organs and bone marrow cells in humans. At a more fundamental level, however, the transplantation enterprise hinged on two seminal turning points. The first was the recognition by Billingham, Brent, and Medawar in 1953 that it was possible to induce chimerism-associated neonatal tolerance deliberately. This discovery escalated over the next 15 years to the first successful bone marrow transplantations in humans in 1968. The second turning point was the demonstration during the early 1960s that canine and human organ allografts could self-induce tolerance with the aid of immunosuppression. By the end of 1962, however, it had been incorrectly concluded that turning points one and two involved different immune mechanisms. The error was not corrected until well into the 1990s. In this historical account, the vast literature that sprang up during the intervening 30 years has been summarized. Although admirably documenting empiric progress in clinical transplantation, its failure to explain organ allograft acceptance predestined organ recipients to lifetime immunosuppression and precluded fundamental changes in the treatment policies. After it was discovered in 1992 that long-surviving organ transplant recipient had persistent microchimerism, it was possible to see the mechanistic commonality of organ and bone marrow transplantation. A clarifying central principle of immunology could then be synthesized with which to guide efforts to induce tolerance systematically to human tissues and perhaps ultimately to xenografts
Regulation of plasma LDL: the apoB paradigm
The objectives of this analysis are to re-examine the foundational studies of the in vivo metabolism of plasma LDL (low-density lipoprotein) particles in humans and, based on them, to reconstruct our understanding of the governance of the concentration of plasma LDL and the maintenance of cholesterol homoeostasis in the hepatocyte. We believe that regulation of cholesterol homoeostasis within the hepatocyte is demonstrably more complex than envisioned by the LDL receptor paradigm, the conventional model to explain the regulation of plasma LDL and the fluxes of cholesterol into the liver, a model which was generated in the fibroblast but has never been fully validated in the hepatocyte. We suggest that the LDL receptor paradigm should be reconfigured as the apoB (apolipoprotein B) paradigm, which states that the rate at which LDL particles are produced is at least an important determinant of their concentration in plasma as the rate at which they are cleared from plasma and that secretion of cholesterol within VLDL (very-low-density lipoprotein) particles is an important mechanism of maintaining cholesterol homoeostasis within the hepatocyte. These two paradigms are not mutually exclusive. The LDL receptor paradigm, however, includes only one critical aspect of the regulation of plasma LDL, namely the rate at which LDL particles are cleared through the LDL receptor pathway, but ignores another – the rate at which LDL particles are added to the plasma compartment. The apoB paradigm includes both and points to a different model of how the hepatocyte achieves cholesterol homoeostasis in a complex metabolic environment
Responses of Massachusetts hospitals to a state mandate to collect race, ethnicity and language data from patients: a qualitative study
<p>Abstract</p> <p>Background</p> <p>A Massachusetts regulation implemented in 2007 has required all acute care hospitals to report patients' race, ethnicity and preferred language using standardized methodology based on self-reported information from patients. This study assessed implementation of the regulation and its impact on the use of race and ethnicity data in performance monitoring and quality improvement within hospitals.</p> <p>Methods</p> <p>Thematic analysis of semi-structured interviews with executives from a representative sample of 28 Massachusetts hospitals in 2009.</p> <p>Results</p> <p>The number of hospitals using race, ethnicity and language data internally beyond refining interpreter services increased substantially from 11 to 21 after the regulation. Thirteen of these hospitals were utilizing patient race and ethnicity data to identify disparities in quality performance measures for a variety of clinical processes and outcomes, while 16 had developed patient services and community outreach programs based on findings from these data. Commonly reported barriers to data utilization include small numbers within categories, insufficient resources, information system requirements, and lack of direction from the state.</p> <p>Conclusions</p> <p>The responses of Massachusetts hospitals to this new state regulation indicate that requiring the collection of race, ethnicity and language data can be an effective method to promote performance monitoring and quality improvement, thereby setting the stage for federal standards and incentive programs to eliminate racial and ethnic disparities in the quality of health care.</p
Lipidomic analysis of variation in response to simvastatin in the Cholesterol and Pharmacogenetics Study
Statins are commonly used for reducing cardiovascular disease risk but therapeutic benefit and reductions in levels of low-density lipoprotein cholesterol (LDL-C) vary among individuals. Other effects, including reductions in C-reactive protein (CRP), also contribute to treatment response. Metabolomics provides powerful tools to map pathways implicated in variation in response to statin treatment. This could lead to mechanistic hypotheses that provide insight into the underlying basis for individual variation in drug response. Using a targeted lipidomics platform, we defined lipid changes in blood samples from the upper and lower tails of the LDL-C response distribution in the Cholesterol and Pharmacogenetics study. Metabolic changes in responders are more comprehensive than those seen in non-responders. Baseline cholesterol ester and phospholipid metabolites correlated with LDL-C response to treatment. CRP response to therapy correlated with baseline plasmalogens, lipids involved in inflammation. There was no overlap of lipids whose changes correlated with LDL-C or CRP responses to simvastatin suggesting that distinct metabolic pathways govern statin effects on these two biomarkers. Metabolic signatures could provide insights about variability in response and mechanisms of action of statins
Low Density Lipoprotein Metabolism and Cholesterol Synthesis in Familial Homozygous Hypercholesterolemia: Influence of Portacaval Shunt Surgery
- …
