1,164 research outputs found
Recommended from our members
Absolute single photoionization cross-sections of Br3+: Experiment and theory
Absolute single photoionization cross section measurements for Br3+ ions are reported in the photon energy range 44.79-59.54 eV at a photon energy resolution of 21 ±3 meV. Measurements were performed at the Advanced Light Source at Lawrence Berkeley National Laboratory using the merged-beams technique. Numerous resonance features in the experimental spectrum are assigned and their energies and quantum defect values are tabulated. The cross-section measurements are also compared with Breit-Pauli R-matrix calculations with suitable agreement over the photon energy range investigated. Analysis of the measured spectrum including Rydberg resonance series identifications produced a new emperical determination of the ionizational potential of Br3+ of 46.977 ± 0.050 eV, which is 805 meV lower than the most recently published value of 47.782 eV. This disparity between our determination and the earlier published value is similar to an 843 meV shift in the accepted ionization potential published for iso-electronic Se2+ as part of this same research program
New Atomic Data for Trans-Iron Elements and Their Application to Abundance Determinations in Planetary Nebulae
[Abridged] Investigations of neutron(n)-capture element nucleosynthesis and
chemical evolution have largely been based on stellar spectroscopy. However,
the recent detection of these elements in several planetary nebulae (PNe)
indicates that nebular spectroscopy is a promising new tool for such studies.
In PNe, n-capture element abundance determinations reveal details of s-process
nucleosynthesis and convective mixing in evolved low-mass stars, as well as the
chemical evolution of elements that cannot be detected in stellar spectra. Only
one or two ions of a given trans-iron element can typically be detected in
individual nebulae. Elemental abundance determinations thus require corrections
for the abundances of unobserved ions. Such corrections rely on the
availability of atomic data for processes that control the ionization
equilibrium of nebulae. Until recently, these data were unknown for virtually
all n-capture element ions. For the first five ions of Se, Kr, and Xe -- the
three most widely detected n-capture elements in PNe -- we are calculating
photoionization cross sections and radiative and dielectronic recombination
rate coefficients using the multi-configuration Breit-Pauli atomic structure
code AUTOSTRUCTURE. Charge transfer rate coefficients are being determined with
a multichannel Landau-Zener code. To calibrate these calculations, we have
measured absolute photoionization cross sections of Se and Xe ions at the
Advanced Light Source synchrotron radiation facility. These atomic data can be
incorporated into photoionization codes, which we will use to derive ionization
corrections (hence abundances) for Se, Kr, and Xe in ionized nebulae. These
results are critical for honing nebular spectroscopy into a more effective tool
for investigating the production and chemical evolution of trans-iron elements
in the Universe.Comment: 10 pages, 2 figures, accepted for publication in the Canadian Journal
of Physic
Efficient Passive ICS Device Discovery and Identification by MAC Address Correlation
Owing to a growing number of attacks, the assessment of Industrial Control
Systems (ICSs) has gained in importance. An integral part of an assessment is
the creation of a detailed inventory of all connected devices, enabling
vulnerability evaluations. For this purpose, scans of networks are crucial.
Active scanning, which generates irregular traffic, is a method to get an
overview of connected and active devices. Since such additional traffic may
lead to an unexpected behavior of devices, active scanning methods should be
avoided in critical infrastructure networks. In such cases, passive network
monitoring offers an alternative, which is often used in conjunction with
complex deep-packet inspection techniques. There are very few publications on
lightweight passive scanning methodologies for industrial networks. In this
paper, we propose a lightweight passive network monitoring technique using an
efficient Media Access Control (MAC) address-based identification of industrial
devices. Based on an incomplete set of known MAC address to device
associations, the presented method can guess correct device and vendor
information. Proving the feasibility of the method, an implementation is also
introduced and evaluated regarding its efficiency. The feasibility of
predicting a specific device/vendor combination is demonstrated by having
similar devices in the database. In our ICS testbed, we reached a host
discovery rate of 100% at an identification rate of more than 66%,
outperforming the results of existing tools.Comment: http://dx.doi.org/10.14236/ewic/ICS2018.
Probabilistic Clustering of Time-Evolving Distance Data
We present a novel probabilistic clustering model for objects that are
represented via pairwise distances and observed at different time points. The
proposed method utilizes the information given by adjacent time points to find
the underlying cluster structure and obtain a smooth cluster evolution. This
approach allows the number of objects and clusters to differ at every time
point, and no identification on the identities of the objects is needed.
Further, the model does not require the number of clusters being specified in
advance -- they are instead determined automatically using a Dirichlet process
prior. We validate our model on synthetic data showing that the proposed method
is more accurate than state-of-the-art clustering methods. Finally, we use our
dynamic clustering model to analyze and illustrate the evolution of brain
cancer patients over time
Calculation of the positron bound state with the copper atom
A new relativistic method for calculation of positron binding to atoms is
presented. The method combines a configuration interaction treatment of the
valence electron and the positron with a many-body perturbation theory
description of their interaction with the atomic core. We apply this method to
positron binding by the copper atom and obtain the binding energy of 170 meV (+
- 10%). To check the accuracy of the method we use a similar approach to
calculate the negative copper ion. The calculated electron affinity is 1.218
eV, in good agreement with the experimental value of 1.236 eV. The problem of
convergence of positron-atom bound state calculations is investigated, and
means to improve it are discussed. The relativistic character of the method and
its satisfactory convergence make it a suitable tool for heavier atoms.Comment: 15 pages, 5 figures, RevTe
Cell arrest and cell death in mammalian preimplantation development
The causes, modes, biological role and prospective significance of cell death in preimplantation development in humans and other mammals are still poorly understood. Early bovine embryos represent a very attractive experimental model for the investigation of this fundamental and important issue.
To obtain reference data on the temporal and spatial occurrence of cell death in early bovine embryogenesis, three-dimensionally preserved embryos of different ages and stages of development up to hatched blastocysts were examined in toto by confocal laser scanning microscopy. In parallel, transcript abundance profiles for selected apoptosis-related genes were analyzed by real-time reverse transcriptase-polymerase chain reaction. Our study documents that in vitro as well as in vivo, the first four cleavage cycles are prone to a high failure rate including different types of permanent cell cycle arrest and subsequent non-apoptotic blastomere death. In vitro produced and in vivo derived blastocysts showed a significant incidence of cell death in the inner cell mass (ICM), but only in part with morphological features of apoptosis. Importantly, transcripts for CASP3, CASP9, CASP8 and FAS/FASLG were not detectable or found at very low abundances.
In vitro and in vivo, errors and failures of the first and the next three cleavage divisions frequently cause immediate embryo death or lead to aberrant subsequent development, and are the main source of developmental heterogeneity. A substantial occurrence of cell death in the ICM even in fast developing blastocysts strongly suggests a regular developmentally controlled elimination of cells, while the nature and mechanisms of ICM cell death are unclear. Morphological findings as well as transcript levels measured for important apoptosis-related genes are in conflict with the view that classical caspase-mediated apoptosis is the major cause of cell death in early bovine development
Identification of absolute geometries of cis and trans molecular isomers by Coulomb Explosion Imaging
Citation: Ablikim, U., Bomme, C., Xiong, H., Savelyev, E., Obaid, R., Kaderiya, B., . . . Rolles, D. (2016). Identification of absolute geometries of cis and trans molecular isomers by Coulomb Explosion Imaging. Scientific Reports, 6, 8. doi:10.1038/srep38202An experimental route to identify and separate geometric isomers by means of coincident Coulomb explosion imaging is presented, allowing isomer-resolved photoionization studies on isomerically mixed samples. We demonstrate the technique on cis/trans 1,2-dibromoethene (C2H2Br2). The momentum correlation between the bromine ions in a three-body fragmentation process induced by bromine 3d inner-shell photoionization is used to identify the cis and trans structures of the isomers. The experimentally determined momentum correlations and the isomer-resolved fragment-ion kinetic energies are matched closely by a classical Coulomb explosion model
Contributions of a global network of tree diversity experiments to sustainable forest plantations
The area of forest plantations is increasing worldwide helping to meet timber demand and protect natural forests. However, with global change, monospecific plantations are increasingly vulnerable to abiotic and biotic disturbances. As an adaption measure we need to move to plantations that are more diverse in genotypes, species, and structure, with a design underpinned by science. TreeDivNet, a global network of tree diversity experiments, responds to this need by assessing the advantages and disadvantages of mixed species plantations. The network currently consists of 18 experiments, distributed over 36 sites and five ecoregions. With plantations 1–15 years old, TreeDivNet can already provide relevant data for forest policy and management. In this paper, we highlight some early results on the carbon sequestration and pest resistance potential of more diverse plantations. Finally, suggestions are made for new, innovative experiments in understudied regions to complement the existing network
Cell Cycle- and Cancer-Associated Gene Networks Activated by Dsg2: Evidence of Cystatin A Deregulation and a Potential Role in Cell-Cell Adhesion
This work was supported by grants from
the National Institutes of Health (Mahoney,
R01AR056067; Riobo, RO1 GM088256). The
funders had no role in study design, data collection
and analysis, decision to publish, or preparation of
the manuscript
- …
