169 research outputs found

    Biphasic Epoxidation Reaction in the Absence of Surfactants - Integration of Reaction and Separation Steps in Microtubular Reactors

    Get PDF
    This paper presents a paradigm shift with respect to the current direction of biphasic reactions in surfactant-free emulsions. Herein, the contact area between both phases is simply sustained by the reactor design (i.e., diameter of the tubular reactor) compared to the current trend of using reversible/switchable emulsions where the addition of an external agent (e.g., bistable surfactant, magnetic particles, etc.) is required. In this way, temporally stable phase dispersions using microtubular reactors facilitate the integration of reaction and separation steps in biphasic systems without the need for energy-intensive downstream separation steps. In this study, we demonstrate this innovative tool in the epoxidation reaction of sunflower oil with hydrogen peroxide. Using a combination of mechanistic and kinetic studies, we demonstrate that the poor solubility of the catalytic species in the oil phase may be used advantageously, allowing ready recyclability of catalyst (and oxidant) in consecutive runs.The authors thank the UK Engineering and Physical Sciences Research Council for funding via the EPSRC Doctoral Training Centre in Sustainable Chemical Technologies, University of Bath (Grant No. EP/G03768X/1) and a L.T.-M.’s Fellowship award (Grant No. EP/L020432/2).This is the author accepted manuscript. The final version is available from the American Chemical Society via http://dx.doi.org/10.1021/acssuschemeng.6b0028

    The characteristics of sexual abuse in sport: A multidimensional scaling analysis of events described in media reports

    Get PDF
    Most research on sexual abuse has been conducted within family settings (Fergusson & Mullen, 1999). In recent years, following several high profile convictions and scandals, research into sexual abuse has also encompassed institutional and community settings such as sport and the church (Gallagher, 2000; Wolfe et al., 2003). Research into sexual abuse in sport, for example, began with both prevalence studies (Kirby & Greaves, 1996; Leahy, Pretty & Tenenbaum, 2002) and qualitative analyses of the processes and experiences of athlete sexual abuse (Brackenridge, 1997; Cense & Brackenridge, 2001, Toftegaard Nielsen, 2001). From such work, descriptions of the modus operandi of abusers in sport, and the experiences and consequences for athlete victims, have been provided, informing both abuse prevention work and coach education. To date, however, no study has provided empirical support for multiple associations or identified patterns of sex offending in sport in ways that might allow comparisons with research-generated models of offending outside sport. This paper reports on an analysis of 159 cases of criminally defined sexual abuse, reported in the print media over a period of 15 years. The main aim of the study was to identify the nature of sex offending in sport focusing on the methods and locations of offences. The data were analysed using multidimensional scaling (MDS), as a data reduction method, in order to identify the underlying themes within the abuse and explore the inter-relationships of behaviour, victim and context variables. The findings indicate that there are specific themes that can be identified within the perpetrator strategies that include ‘intimate’, ‘aggressive’, and ‘’dominant’ modes of interaction. The same patterns that are described here within the specific context of sport are consistent with themes that emerge from similar behavioural analyses of rapists (Canter & Heritage, 1990; Bishopp, 2003) and child molester groups (Canter, Hughes & Kirby, 1998). These patterns show a correspondence to a broader behavioural model – the interpersonal circumplex (e.g., Leary 1957). Implications for accreditation and continuing professional education of sport psychologists are noted

    The auxin efflux carrier PIN1a regulates vascular patterning in cereal roots

    Get PDF
    Barley (Hordeum vulgare) is an important global cereal crop and a model in genetic studies. Despite advances in characterising barley genomic resources, few mutant studies have identified genes controlling root architecture and anatomy, which plays a critical role in capturing soil resources. Our phenotypic screening of a TILLING mutant collection identified line TM5992 exhibiting a short-root phenotype compared with wild-type (WT) Morex background. Outcrossing TM5992 with barley variety Proctor and subsequent SNP array-based bulk segregant analysis, fine mapped the mutation to a cM scale. Exome sequencing pinpointed a mutation in the candidate gene HvPIN1a, further confirming this by analysing independent mutant alleles. Detailed analysis of root growth and anatomy in Hvpin1a mutant alleles exhibited a slower growth rate, shorter apical meristem and striking vascular patterning defects compared to WT. Expression and mutant analyses of PIN1 members in the closely related cereal brachypodium (Brachypodium distachyon) revealed that BdPIN1a and BdPIN1b were redundantly expressed in root vascular tissues but only Bdpin1a mutant allele displayed root vascular defects similar to Hvpin1a. We conclude that barley PIN1 genes have sub-functionalised in cereals, compared to Arabidopsis (Arabidopsis thaliana), where PIN1a sequences control root vascular patterning

    Diffusible repression of cytokinin signalling produces endodermal symmetry and passage cells.

    Get PDF
    In vascular plants, the root endodermis surrounds the central vasculature as a protective sheath that is analogous to the polarized epithelium in animals, and contains ring-shaped Casparian strips that restrict diffusion. After an initial lag phase, individual endodermal cells suberize in an apparently random fashion to produce 'patchy' suberization that eventually generates a zone of continuous suberin deposition. Casparian strips and suberin lamellae affect paracellular and transcellular transport, respectively. Most angiosperms maintain some isolated cells in an unsuberized state as so-called 'passage cells', which have previously been suggested to enable uptake across an otherwise-impermeable endodermal barrier. Here we demonstrate that these passage cells are late emanations of a meristematic patterning process that reads out the underlying non-radial symmetry of the vasculature. This process is mediated by the non-cell-autonomous repression of cytokinin signalling in the root meristem, and leads to distinct phloem- and xylem-pole-associated endodermal cells. The latter cells can resist abscisic acid-dependent suberization to produce passage cells. Our data further demonstrate that, during meristematic patterning, xylem-pole-associated endodermal cells can dynamically alter passage-cell numbers in response to nutrient status, and that passage cells express transporters and locally affect the expression of transporters in adjacent cortical cells

    Penetration of the Stigma and Style Elicits a Novel Transcriptome in Pollen Tubes, Pointing to Genes Critical for Growth in a Pistil

    Get PDF
    Pollen tubes extend through pistil tissues and are guided to ovules where they release sperm for fertilization. Although pollen tubes can germinate and elongate in a synthetic medium, their trajectory is random and their growth rates are slower compared to growth in pistil tissues. Furthermore, interaction with the pistil renders pollen tubes competent to respond to guidance cues secreted by specialized cells within the ovule. The molecular basis for this potentiation of the pollen tube by the pistil remains uncharacterized. Using microarray analysis in Arabidopsis, we show that pollen tubes that have grown through stigma and style tissues of a pistil have a distinct gene expression profile and express a substantially larger fraction of the Arabidopsis genome than pollen grains or pollen tubes grown in vitro. Genes involved in signal transduction, transcription, and pollen tube growth are overrepresented in the subset of the Arabidopsis genome that is enriched in pistil-interacted pollen tubes, suggesting the possibility of a regulatory network that orchestrates gene expression as pollen tubes migrate through the pistil. Reverse genetic analysis of genes induced during pollen tube growth identified seven that had not previously been implicated in pollen tube growth. Two genes are required for pollen tube navigation through the pistil, and five genes are required for optimal pollen tube elongation in vitro. Our studies form the foundation for functional genomic analysis of the interactions between the pollen tube and the pistil, which is an excellent system for elucidation of novel modes of cell–cell interaction

    Elucidating tissue and subcellular specificity of the entire SUMO network reveals how stress responses are fine-tuned in a eukaryote

    Get PDF
    SUMOylation is essential in plant and animal cells, but it remains unknown how small ubiquitin-like modifier (SUMO) components act in concert to modify specific targets in response to environmental stresses. In this study, we characterize every SUMO component in the Arabidopsis root to create a complete SUMO Cell Atlas in eukaryotes. This unique resource reveals wide spatial variation, where SUMO proteins and proteases have subfunctionalized in both their expression and subcellular localization. During stress, SUMO conjugation is mainly driven by tissue-specific regulation of the SUMO E2-conjugating enzyme. Stress-specific modulation of the SUMO pathway reveals unique combinations of proteases being targeted for regulation in distinct root tissues by salt, osmotic, and biotic signals. Our SUMO Cell Atlas resources reveal how this posttranslational modification (PTM) influences cellular- and tissue-scale adaptations during root development and stress responses. To our knowledge, we provide the first comprehensive study elucidating how multiple stress inputs can regulate an entire PTM system

    A Genome-Wide Association Study of Diabetic Kidney Disease in Subjects With Type 2 Diabetes

    Get PDF
    Identification of sequence variants robustly associated with predisposition to diabetic kidney disease (DKD) has the potential to provide insights into the pathophysiological mechanisms responsible. We conducted a genome-wide association study (GWAS) of DKD in type 2 diabetes (T2D) using eight complementary dichotomous and quantitative DKD phenotypes: the principal dichotomous analysis involved 5,717 T2D subjects, 3,345 with DKD. Promising association signals were evaluated in up to 26,827 subjects with T2D (12,710 with DKD). A combined (T1D+T2D) GWAS was performed using complementary data available for subjects with T1D, which, with replication samples, involved up to 40,340 diabetic subjects (and 18,582 DKD cases). Analysis of specific DKD phenotypes identified a novel signal near GABRR1 (rs9942471, p=4.5×10-8) associated with 'microalbuminuria' in European T2D cases. However, no replication of this signal was observed in Asian subjects with T2D, or in the equivalent T1D analysis. There was only limited support, in this substantially enlarged analysis, for association at previously-reported DKD signals, except for those at UMOD and PRKAG2, both associated with 'EGFR'. We conclude that, despite challenges in addressing phenotypic heterogeneity, access to increased sample sizes will continue to provide more robust inference regarding risk-variant discovery for DKD.</p

    Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch

    Get PDF
    Silver birch (Betula pendula) is a pioneer boreal tree that can be induced to flower within 1 year. Its rapid life cycle, small (440-Mb) genome, and advanced germplasm resources make birch an attractive model for forest biotechnology. We assembled and chromosomally anchored the nuclear genome of an inbred B. pendula individual. Gene duplicates from the paleohexaploid event were enriched for transcriptional regulation, whereas tandem duplicates were overrepresented by environmental responses. Population resequencing of 80 individuals showed effective population size crashes at major points of climatic upheaval. Selective sweeps were enriched among polyploid duplicates encoding key developmental and physiological triggering functions, suggesting that local adaptation has tuned the timing of and cross-talk between fundamental plant processes. Variation around the tightly-linked light response genes PHYC and FRS10 correlated with latitude and longitude and temperature, and with precipitation for PHYC. Similar associations characterized the growth-promoting cytokinin response regulator ARR1, and the wood development genes KAK and MED5A.Peer reviewe
    corecore