87 research outputs found
The effects of equine-assisted activities on the social functioning in children and adolescents with autism spectrum disorder
Equine-assisted activities and therapies are increasing in popularity for treatment of ASD symptoms. This research evaluated effects of a 5-week programme of therapeutic riding on social functioning of children/adolescents (N = 15) with ASD. The effectiveness of the programme was evaluated using the autism spectrum quotient, the Vineland Adaptive Behaviour Scale and the empathising and systemising quotient. Results established that the TR intervention increased empathising and reduced maladaptive behaviours. The findings also indicated that specific adaptive behaviours like socialization and communication were not affected by the intervention. Thus, a complex picture of the effects of this intervention emerges: while TR does not change all of the child’s behaviour, it can improve specific aspects of social functioning and also reduce maladaptive ASD traits
A range of catalytic efficiencies with avian retroviral protease subunits genetically linked to form single polypeptide chains
Molecular modeling based on the crystal structure of the Rous sarcoma virus (RSV) protease dimer has been used to link the two identical subunits of this enzyme into a functional, single polypeptide chain resembling the nonviral aspartic proteases. Six different linkages were selected to test the importance of different interactions between the amino acids at the amino and carboxyl termini of the two subunits. These linkages were introduced into molecular clones of fused protease genes and the linked protease dimers were expressed in Escherichia coli and purified. Catalytically active proteins were obtained from the inclusion body fraction after renaturation. The linked protease dimers exhibited a 10-20-fold range in catalytic efficiencies (V(max)/K(m)) on peptide substrates. Both flexibility and ionic interactions in the linkage region affect catalytic efficiency. Some of the linked protease dimers were 2-3-fold more active than the nonlinked enzyme purified from bacteria, although substrate specificities were unchanged. Similar relative efficiencies were observed using a polyprotein precursor as substrate. Mutation of one catalytic Asp in the most active linked protease dimer inactivated the enzyme, demonstrating that these proteins function as single polypeptide chains rather than as multimers
Mutations that alter the activity of the Rous sarcoma virus protease
Mutations designed by analysis of the Rous sarcoma virus (RSV) and human immunodeficiency virus (HIV)-1 protease (PR) crystal structures were introduced into 1) the substrate binding pocket, 2) the substrate enclosing 'flaps,' and 3) surface loops of RSV PR. Each mutant PR was expressed in Escherichia coli. Changes in activity were detected by following cleavage of a truncated (NC-PR) precursor polypeptide in E. coli and cleavage of synthetic peptide substrates representing RSV and HIV-1 PR cleavage sites in vitro. Mutations in the substrate binding pocket exchanged amino acid residues located close to the substrate in the HIV-1 PR for structurally equivalent residues in the RSV PR. Changing histidine 65 to glycine (H65G) gave an inactive enzyme, while a double mutant R105P, G106V, as well as the triple mutant, H65G, R105P, G106V, produced enzymes which showed significant activity toward a substrate that represented a HIV-1 cleavage site. Mutating the catalytic aspartate (D37S) or an adjacent conserved alanine to threonine (A40T), produced inactive enzymes. In contrast, the substitution A40S was active, but showed a reduced rate of catalysis. Mutations in the flaps of conserved glycines (G69L, G70L) produced inactive PRs. Two extended RSV PR surface loops were shortened to the size found in HIV-1 PR and resulted in drastically reduced activity. These results have confirmed some of the basic predictions made from structural models but have also revealed unexpected roles and interactions in the protein
Analysis of substrate interactions of the Rous sarcoma virus wild type and mutant proteases and human immunodeficiency virus-1 protease using a set of systematically altered peptide substrates
In the preceding study, mutant Rous sarcoma virus (RSV) proteases are described in which three amino acids found in the human immunodeficiency virus-1 (HIV-1) protease (PR) were substituted into structurally comparable positions (Grinde, B., Cameron, C. E., Leis, J., Weber, I., Wlodawer, A., Burstein, H., Bizub, D., and Skalka, A. M. (1992) J. Biol. Chem. 267, 9481- 9490). In this report, the activity of the wild type and these mutant PRs are compared using a set of RSV NC-PR peptide substrates with single amino acid substitutions in each of the P4 to P3' positions. With most substrates, the relative activities of the two active mutants followed that of the RSV PR. Substitutions in the P1 and P1' positions were an exception; in this case, the mutants behaved more like the HIV-1 PR. These results confirm predictions from structural analyses which indicate that residues 105 and 106 of the RSV PR are important in forming the S1 and S1' binding subsites. These results, further analyzed with the aid of computer modeling of the RSV PR with different substrates, provide an explanation for why only partial HIV-1 PR- like behavior was introduced into the above RSV PR mutants
Programming the Rous sarcoma virus protease to cleave new substrate sequences
The Rous sarcoma virus protease displays a high degree of specificity and catalyzes the cleavage of only a limited number of amino acid sequences. This specificity is governed by interactions between side chains of eight substrate amino acids and eight corresponding subsite pockets within the homodimeric enzyme. We have examined these complex interactions in order to learn how to introduce changes into the retroviral protease (PR) that direct it to cleave new substrates. Mutant enzymes with altered substrate specificity and wild-type or greater catalytic rates have been constructed previously by substituting single key amino acids in each of the eight enzyme subsites with those residues found in structurally related positions of human immunodeficiency virus (HIV)-1 PR. These individual amino acid substitutions have now been combined into one enzyme, resulting in a highly active mutant Rous sarcoma virus (RSV) protease that displays many characteristics associated with the HIV-1 enzyme. The hybrid protease is capable of catalyzing the cleavage of a set of HIV-1 viral polyprotein substrates that are not recognized by the wild-type RSV enzyme. Additionally, the modified PR is inhibited completely by the HIV-1 PR-specific inhibitor KNI-272 at concentrations where wild-type RSV PR is unaffected. These results indicate that the major determinants that dictate RSV and HIV-1 PR substrate specificity have been identified. Since the viral protease is a homodimer, the rational design of enzymes with altered specificity also requires a thorough understanding of the importance of enzyme symmetry in substrate selection. We demonstrate here that the enzyme homodimer acts symmetrically in substrate selection with each enzyme subunit being capable of recognizing both halves of a peptide substrate equally
Mutational analysis of the substrate binding pockets of the Rous sarcoma virus and human immunodeficiency virus-1 proteases
Mutations, designed by analysis of the crystal structures of Rous sarcoma virus (RSV) and human immunodeficiency virus type 1 (HIV-1) protease (PR), were introduced into the substrate binding pocket of RSV PR. The mutations substituted nonconserved residues of RSV PR, located within 10 Å of the substrate, for those in structurally equivalent positions of HIV-1 PR. Changes in the activity of purified mutants were detected in vitro by following cleavage of synthetic peptides representing wild-type and modified RSV and HIV-1 gag and pol polyprotein cleavage sites. Substituting threonine for valine 104 (V104T), S107N, I44V, Q63M or deletion of residues 61-63 produced enzymes that were 2.5-7-fold more active than the wild type RSV PR. Substituting I42D, M73V, and A100L produced enzymes with lower activity, whereas a mutant that included both M73V and A100L was as active as wild type. Several substitutions altered the specificity for substrate. These include I42D and I44V, which contribute to the S2 and S2' subsites. These proteins exhibited HIV-1 PR specificity for P2- or P2'-modified peptide substrates but unchanged specificity with P4-, P3-, P1-, P1'-, and P3'- modified substrates. Changes in specificity in the S4 subsite were detected by deletion of residues 61-63. These results confirm the hypothesis that the subsites of the substrate binding pocket of the retroviral protease are capable of acting independently in the selection of substrate amino acids
Activation of MEK2 is sufficient to induce skin papilloma formation in transgenic zebrafish
Assembly and processing of avian retroviral gag polyproteins containing linked protease dimers
Assembly and maturation of retroviral particles requires the aggregation and controlled proteolytic cleavage of polyprotein core precursors by a precursor-encoded protease (PR). Active, mature retroviral PR is a dimer, and the accumulation of precursors at sites of assembly may facilitate subunit interaction and subsequent activation of this enzyme. In addition, it has been suggested that cellular cytoplasmic components act as inhibitors of PR activity, so that processing is delayed until the nascent virions leave this compartment and separate from the surface of host cells. To investigate the mechanisms that control PR activity during virus assembly, we studied the in vivo processing of retroviral gag precursors that contain tandemly linked PR subunits in which dimerization is concentration independent. Sequences encoding four different linked protease dimers were independently joined to the end of the Rous sarcoma virus (RSV) gag gene in a simian virus 40-based plasmid vector which expresses a myristoylated gag precursor upon transfection of COS-1 cells. Three of these plasmids produced gag precursors that were incorporated into viruslike particles and proteolytically cleaved by the dimers to mature core proteins that were indistinguishable from the processed products of wild-type gag. The amount of viral gag protein that was assembled and packaged in these transfections was inversely related to the relative proteolytic activities of the linked PR dimers. The fourth gag precursor, which contained the most active linked PR dimer, underwent rapid intracellular processing and did not form viruslike particles. In the absence of the plasma membrane targeting signal, processing of all four linked PR dimer-containing gag precursors was completed entirely within the cell. From these results, we conclude that the delay in polyprotein core precursor processing that occurs during normal virion assembly does not depend on a cytoplasmic inhibitor of PR activity. We suggest that dimer formation is not only necessary but may be sufficient for the initiation of PR-directed maturation of gag and gag-pol precursors.</jats:p
- …
