179 research outputs found
Rapid assessment of nonlinear optical propagation effects in dielectrics
Ultrafast laser processing applications need fast approaches to assess the nonlinear propagation of the laser beam in order to predict the optimal range of processing parameters in a wide variety of cases. We develop here a method based on the simple monitoring of the nonlinear beam shaping against numerical prediction. The numerical code solves the nonlinear Schrödinger equation with nonlinear absorption under simplified conditions by employing a state-of-the art computationally efficient approach. By comparing with experimental results we can rapidly estimate the nonlinear refractive index and nonlinear absorption coefficients of the material. The validity of this approach has been tested in a variety of experiments where nonlinearities play a key role, like spatial soliton shaping or fs-laser waveguide writing. The approach provides excellent results for propagated power densities for which free carrier generation effects can be neglected. Above such a threshold, the peculiarities of the nonlinear propagation of elliptical beams enable acquiring an instantaneous picture of the deposition of energy inside the material realistic enough to estimate the effective nonlinear refractive index and nonlinear absorption coefficients that can be used for predicting the spatial distribution of energy deposition inside the material and controlling the beam in the writing process
Anonymity and Rewards in Peer Rating Systems
When peers rate each other, they may choose to rate inaccurately in order to boost their own reputation or unfairly lower another’s. This could be successfully mitigated by having a reputation server incentivise accurate ratings with a reward. However, assigning rewards becomes a challenge when ratings are anonymous, since the reputation server cannot tell which peers to reward for rating accurately. To address this, we propose an anonymous peer rating system in which users can be rewarded for accurate ratings, and we formally define its model and security requirements. In our system ratings are rewarded in batches, so that users claiming their rewards only reveal they authored one in this batch of ratings. To ensure the anonymity set of rewarded users is not reduced, we also split the reputation server into two entities, the Rewarder, who knows which ratings are rewarded, and the Reputation Holder, who knows which users were rewarded. We give a provably secure construction satisfying all the security properties required. For our construction we use a modification of a Direct Anonymous Attestation scheme to ensure that peers can prove their own reputation when rating others, and that multiple feedback on the same subject can be detected. We then use Linkable Ring Signatures to enable peers to be rewarded for their accurate ratings, while still ensuring that ratings are anonymous. Our work results in a system which allows for accurate ratings to be rewarded, whilst still providing anonymity of ratings with respect to the central entities managing the system
Who let the DOGS out: Anonymous but Auditable communications using Group Signature schemes with Distributed Opening
Over the past two decades, group signature schemes have been developed and used to enable authenticated and anonymous peer-to-peer communications. Initial protocols rely on two main authorities, Issuer and Opener, which are given substantial capabilities compared to (regular) participants, such as the ability to arbitrarily identify users. Building efficient, fast, and short group signature schemes has been the focus of a large number of research contributions. However, only a few dealt with the major privacy-preservation challenge of group signatures; this consists in providing user anonymity and action traceability while not necessarily relying on a central and fully trusted authority. In this paper, we present DOGS, a privacy-preserving Blockchain-supported group signature scheme with a distributed Opening functionality. In DOGS, participants no longer depend on the Opener entity to identify the signer of a potentially fraudulent message; they instead collaborate and perform this auditing process themselves. We provide a high-level description of the DOGS scheme and show that it provides both user anonymity and action traceability. Additionally, we prove how DOGS is secure against message forgery and anonymity attacks
Solving Generalized Small Inverse Problems
Abstract. We introduce a “generalized small inverse problem (GSIP)” and present an algorithm for solving this problem. GSIP is formulated as finding small solutions of f(x0, x1,..., xn) = x0h(x1,..., xn) + C = 0(mod M) for an n-variate polynomial h, non-zero integers C and M. Our algorithm is based on lattice-based Coppersmith technique. We pro-vide a strategy for construction of a lattice basis for solving f = 0, which are systematically transformed from a lattice basis for solving h = 0. Then, we derive an upper bound such that the target problem can be solved in polynomial time in logM in an explicit form. Since GSIPs in-clude some RSA-related problems, our algorithm is applicable to them. For example, the small key attacks by Boneh and Durfee are re-found automatically. This is a full version of [13]
Programmable and Parallel ECC Coprocessor Architecture: Tradeoffs between Area, Speed and Security
A New Approach to Modelling Centralised Reputation Systems
A reputation system assigns a user or item a reputation value which can be used to evaluate trustworthiness. Blömer, Juhnke and Kolb in 2015, and Kaafarani, Katsumata and Solomon in 2018, gave formal models for \mathit{centralised} reputation systems, which rely on a central server and are widely used by service providers such as AirBnB, Uber and Amazon. In these models, reputation values are given to items, instead of users. We advocate a need for shift in how reputation systems are modelled, whereby reputation values are given to users, instead of items, and each user has unlinkable items that other users can give feedback on, contributing to their reputation value. This setting is not captured by the previous models, and we argue it captures more realistically the functionality and security requirements of a reputation system. We provide definitions for this new model, and give a construction from standard primitives, proving it satisfies these security requirements. We show that there is a low efficiency cost for this new functionality
Time-Specific Signatures
In Time-Specific Signatures (TSS) parameterized by an integer , a signer with a secret-key associated with a numerical value can anonymously, i.e., without revealing , sign a message under a numerical range such that . An application of TSS is anonymous questionnaire, where each user associated with a numerical value such as age, date, salary, geographical position (represented by longitude and latitude) and etc., can anonymously fill in a questionnaire in an efficient manner.
In this paper, we propose two \textit{polylogarithmically} efficient TSS constructions based on asymmetric pairing with groups of prime order, which achieve different characteristics in efficiency. In the first one based on a forward-secure signatures scheme concretely obtained from a hierarchical identity-based signatures scheme proposed by Chutterjee and Sarker (IJACT\u2713), size of the master public-key, size of a secret-key and size of a signature are asymptotically , and size of the master secret-key is . In the second one based on a wildcarded identity-based ring signatures scheme obtained as an instantiation of an attribute-based signatures scheme proposed by Sakai, Attrapadung and Hanaoka (PKC\u2716), the sizes are , , and , respectively
Template-based Fault Injection Analysis of Block Ciphers
We present the first template-based fault injection analysis of FPGA-based block cipher implementations. While template attacks have been a popular form of side-channel analysis in the cryptographic literature, the use of templates in the context of fault attacks has not yet been explored to the best of our knowledge. Our approach involves two phases. The first phase is a profiling phase where we build templates of the fault behavior of a cryptographic device for different secret key segments under different fault injection intensities. This is followed by a matching phase where we match the observed fault behavior of an identical but black-box device with the pre-built templates to retrieve the secret key. We present a generic treatment of our template-based fault attack approach for SPN block ciphers, and illustrate the same with case studies on a Xilinx Spartan-6 FPGA-based implementation of AES-128
A New Partial Key Exposure Attack on Multi-power RSA
An important attack on multi-power RSA () was introduced by Sarkar in 2014, by extending the small private exponent attack of Boneh and Durfee on classical RSA. In particular, he showed that can be factored efficiently for with private exponent satisfying . In this paper, we generalize this work by introducing a new partial key exposure attack for finding small roots of polynomials using Coppersmith\u27s algorithm and Gröbner basis computation. Our attack works for all multi-power RSA exponents (resp. ) when the exponent (resp. ) has full size bit length. The attack requires prior knowledge of least significant bits (LSBs), and has the property that the required known part of LSB becomes smaller in the size of . For practical validation of our attack, we demonstrate several computer algebra experiments
- …
