85 research outputs found
Light bullets in quadratic media with normal dispersion at the second harmonic
Stable two- and three-dimensional spatiotemporal solitons (STSs) in
second-harmonic-generating media are found in the case of normal dispersion at
the second harmonic (SH). This result, surprising from the theoretical
viewpoint, opens a way for experimental realization of STSs. An analytical
estimate for the existence of STSs is derived, and full results, including a
complete stability diagram, are obtained in a numerical form. STSs withstand
not only the normal SH dispersion, but also finite walk-off between the
harmonics, and readily self-trap from a Gaussian pulse launched at the
fundamental frequency.Comment: 4 pages, 5 figures, accepted to Phys. Rev. Let
Critical thermodynamics of three-dimensional MN-component field model with cubic anisotropy from higher-loop \epsilon expansion
The critical thermodynamics of an -component field model with cubic
anisotropy relevant to the phase transitions in certain crystals with
complicated ordering is studied within the four-loop \ve expansion using the
minimal subtraction scheme. Investigation of the global structure of RG flows
for the physically significant cases M=2, N=2 and M=2, N=3 shows that the model
has an anisotropic stable fixed point with new critical exponents. The critical
dimensionality of the order parameter is proved to be equal to
, that is exactly half its counterpart in the real hypercubic
model.Comment: 9 pages, LaTeX, no figures. Published versio
Assessment of the methodology for establishing the EU list of critical raw materials : annexes
Stable spinning optical solitons in three dimensions
We introduce spatiotemporal spinning solitons (vortex tori) of the
three-dimensional nonlinear Schrodinger equation with focusing cubic and
defocusing quintic nonlinearities. The first ever found completely stable
spatiotemporal vortex solitons are demonstrated. A general conclusion is that
stable spinning solitons are possible as a result of competition between
focusing and defocusing nonlinearities.Comment: 4 pages, 6 figures, accepted to Phys. Rev. Let
Critical behavior of certain antiferromagnets with complicated ordering: Four-loop \ve-expansion analysis
The critical behavior of a complex N-component order parameter
Ginzburg-Landau model with isotropic and cubic interactions describing
antiferromagnetic and structural phase transitions in certain crystals with
complicated ordering is studied in the framework of the four-loop
renormalization group (RG) approach in (4-\ve) dimensions. By using
dimensional regularization and the minimal subtraction scheme, the perturbative
expansions for RG functions are deduced and resummed by the Borel-Leroy
transformation combined with a conformal mapping. Investigation of the global
structure of RG flows for the physically significant cases N=2 and N=3 shows
that the model has an anisotropic stable fixed point governing the continuous
phase transitions with new critical exponents. This is supported by the
estimate of the critical dimensionality obtained from six loops
via the exact relation established for the complex and real
hypercubic models.Comment: LaTeX, 16 pages, no figures. Expands on cond-mat/0109338 and includes
detailed formula
Assessment of the methodology for establishing the EU list of critical raw materials : background report
This report presents the results of work carried out by the Directorate General (DG) Joint Research Centre (JRC) of the European Commission (EC), in close cooperation with Directorate-General for Internal Market, Industry, Entrepreneurship and SMEs (GROW), in the context of the revision of the EC methodology that was used to identify the list of critical raw materials (CRMs) for the EU in 2011 and 2014 (EC 2011, 2014). As a background report, it complements the corresponding Guidelines Document, which contains the "ready-to-apply" methodology for updating the list of CRMs in 2017. This background report highlights the needs for updating the EC criticality methodology, the analysis and the proposals for improvement with related examples, discussion and justifications. However, a few initial remarks are necessary to clarify the context, the objectives of the revision and the approach. As the in-house scientific service of the EC, DG JRC was asked to provide scientific advice to DG GROW in order to assess the current methodology, identify aspects that have to be adapted to better address the needs and expectations of the list of CRMs and ultimately propose an improved and integrated methodology. This work was conducted closely in consultation with the adhoc working group on CRMs, who participated in regular discussions and provided informed expert feedback. The analysis and subsequent revision started from the assumption that the methodology used for the 2011 and 2014 CRMs lists proved to be reliable and robust and, therefore, the JRC mandate was focused on fine-tuning and/or targeted incremental methodological improvements. An in depth re-discussion of fundamentals of criticality assessment and/or major changes to the EC methodology were not within the scope of this work. High priority was given to ensure good comparability with the criticality exercises of 2011 and 2014. The existing methodology was therefore retained, except for specific aspects for which there were policy and/or stakeholder needs on the one hand, or strong scientific reasons for refinement of the methodology on the other. This was partially facilitated through intensive dialogue with DG GROW, the CRM adhoc working group, other key EU and extra-EU stakeholders
Experimental and numerical analysis of initial plasticity in P91 steel small punch creep samples
To date, the complex behaviour of small punch creep test (SPCT) specimens has not been completely understood, making the test hard to numerically model and the data difficult to interpret. This paper presents a novel numerical model able to generate results that match the experimental findings. For the first time, pre-strained uniaxial creep test data of a P91 steel at 600 °C have been implemented in a conveniently modified Liu and Murakami creep damage model in order to simulate the effects of the initial localised plasticity on the subsequent creep response of a small punch creep test specimen. Finite element (FE) results, in terms of creep displacement rate and time to failure, obtained by the modified Liu and Murakami model are in good agreement with experimental small punch creep test data. The rupture times obtained by the FE calculations which make use of the non-modified creep damage model are one order of magnitude shorter than those obtained by using the modified constitutive model. Although further investigation is needed, this novel approach has confirmed that the effects of initial localised plasticity, taking place in the early stages of small punch creep test, cannot be neglected. The new results, obtained by using the modified constitutive model, show a significant improvement with respect to those obtained by a state of the art creep damage constitutive model (the Liu and Murakami constitutive model) both in terms of minimum load-line displacement rate and time to rupture. The new modelling method will potentially lead to improved capability for SPCT data interpretatio
An overview of using small punch testing for mechanical characterization of MCrAlY bond coats
Considerable work has been carried out on overlay bond coats in the past several decades because of its excellent oxidation resistance and good adhesion between the top coat and superalloy substrate in the thermal barrier coating systems. Previous studies mainly focus on oxidation and diffusion behavior of these coatings. However, the mechanical behavior and the dominant fracture and deformation mechanisms of the overlay bond coats at different temperatures are still under investigation. Direct comparison between individual studies has not yet been achieved due to the fragmentary data on deposition processes, microstructure and, more apparently, the difficulty in accurately measuring the mechanical properties of thin coatings. One of the miniaturized specimen testing methods, small punch testing, appears to have the potential to provide such mechanical property measurements for thin coatings. The purpose of this paper is to give an overview of using small punch testing to evaluate material properties and to summarize the available mechanical properties that include the ductile-to-brittle transition and creep of MCrAlY bond coat alloys, in an attempt to understand the mechanical behavior of MCrAlY coatings over a broad temperature range
Recent progress in research on tungsten materials for nuclear fusion applications in Europe
The current magnetic confinement nuclear fusion power reactor concepts going beyond ITER are based on assumptions about the availability of materials with extreme mechanical, heat, and neutron load capacity. In Europe, the development of such structural and armour materials together with the necessary production, machining, and fabrication technologies is pursued within the EFDA long-term fusion materials programme. This paper reviews the progress of work within the programme in the area of tungsten and tungsten alloys. Results, conclusions, and future projections are summarized for each of the programme´s main subtopics, which are: (1) fabrication, (2) structural W materials, (3) W armour materials, and (4) materials science and modelling. It gives a detailed overview of the latest results on materials research, fabrication processes, joining options, high heat flux testing, plasticity studies, modelling, and validation experiments
- …
