128 research outputs found
Valproic acid inhibits adhesion of vincristine- and cisplatin-resistant neuroblastoma tumour cells to endothelium
Drug resistance to chemotherapy is often associated with increased malignancy in neuroblastoma (NB). In pursuit of alternative treatments for chemoresistant tumour cells, we tested the response of multidrug-resistant SKNSH and of vincristine (VCR)-, doxorubicin (DOX)-, or cisplatin (CDDP)-resistant UKF-NB-2, UKF-NB-3 or UKF-NB-6 NB tumour cell lines to valproic acid (VPA), a differentiation inducer currently in clinical trials. Drug resistance caused elevated NB adhesion (UKF-NB-2VCR, UKF-NB-2DOX, UKF-NB-2CDDP, UKF-NB-3VCR, UKF-NB-3CDDP, UKF-NB-6VCR, UKF-NB-6CDDP) to an endothelial cell monolayer, accompanied by downregulation of the adhesion receptor neural cell adhesion molecule (NCAM). Based on the UKF-NB-3 model, N-myc proteins were enhanced in UKF-NB-3VCR and UKF-NB-3CDDP, compared to the drug naïve controls. p73 was diminished, whereas the p73 isoform deltaNp73 was upregulated in UKF-NB-3VCR and UKF-NB-3CDDP. Valproic acid blocked adhesion of UKF-NB-3VCR and UKF-NB-3CDDP, but not of UKF-NB-3DOX, and induced the upregulation of NCAM surface expression, NCAM protein content and NCAM coding mRNA. Valproic acid diminished N-myc and enhanced p73 protein level, coupled with downregulation of deltaNp73 in UKF-NB-3VCR and UKF-NB-3CDDP. Valproic acid also reverted enhanced adhesion properties of drug-resistant UKF-NB-2, UKF-NB-6 and SKNSH cells, and therefore may provide an alternative approach to the treatment of drug-resistant NB by blocking invasive processes
Polysialic acid sustains cancer cell survival and migratory capacity in a hypoxic environment
Polysialic acid (polySia) is a unique carbohydrate polymer expressed on the surface of NCAM (neuronal cell adhesion molecule) in a number of cancers where it modulates cell-cell and cell-matrix adhesion, migration, invasion and metastasis and is strongly associated with poor clinical prognosis. We have carried out the first investigation into the effect of polySia expression on the behaviour of cancer cells in hypoxia, a key source of chemoresistance in tumours. The role of polysialylation and associated tumour cell migration and cell adhesion were studied in hypoxia, along with effects on cell survival and the potential role of HIF-1. Our findings provide the first evidence that polySia expression sustains migratory capacity and is associated with tumour cell survival in hypoxia. Initial mechanistic studies indicate a potential role for HIF-1 in sustaining polySia-mediated migratory capacity, but not cell survival. These data add to the growing body of evidence pointing to a crucial role for the polysialyltransferases (polySTs) in neuroendocrine tumour progression and provide the first evidence to suggest that polySia is associated with an aggressive phenotype in tumour hypoxia. These results have significant potential implications for polyST inhibition as an anti-metastatic therapeutic strategy and for targeting hypoxic cancer cells
Benchmarking natural-language parsers for biological applications using dependency graphs
BACKGROUND: Interest is growing in the application of syntactic parsers to natural language processing problems in biology, but assessing their performance is difficult because differences in linguistic convention can falsely appear to be errors. We present a method for evaluating their accuracy using an intermediate representation based on dependency graphs, in which the semantic relationships important in most information extraction tasks are closer to the surface. We also demonstrate how this method can be easily tailored to various application-driven criteria. RESULTS: Using the GENIA corpus as a gold standard, we tested four open-source parsers which have been used in bioinformatics projects. We first present overall performance measures, and test the two leading tools, the Charniak-Lease and Bikel parsers, on subtasks tailored to reflect the requirements of a system for extracting gene expression relationships. These two tools clearly outperform the other parsers in the evaluation, and achieve accuracy levels comparable to or exceeding native dependency parsers on similar tasks in previous biological evaluations. CONCLUSION: Evaluating using dependency graphs allows parsers to be tested easily on criteria chosen according to the semantics of particular biological applications, drawing attention to important mistakes and soaking up many insignificant differences that would otherwise be reported as errors. Generating high-accuracy dependency graphs from the output of phrase-structure parsers also provides access to the more detailed syntax trees that are used in several natural-language processing techniques
Relevance of micrometastases detected by reverse transcriptase-polymerase chain reaction for melanoma recurrence: systematic review and meta-analysis
Combining the receptor tyrosine kinase inhibitor AEE788 and the mammalian target of rapamycin (mTOR) inhibitor RAD001 strongly inhibits adhesion and growth of renal cell carcinoma cells
Background Treatment options for metastatic renal cell carcinoma (RCC) are limited due to resistance to chemo- and radiotherapy. The development of small-molecule multikinase inhibitors have now opened novel treatment options. The influence of the receptor tyrosine kinase inhibitor AEE788, applied alone or combined with the mammalian target of rapamycin (mTOR) inhibitor RAD001, on RCC cell adhesion and proliferation in vitro has been evaluated. Methods RCC cell lines Caki-1, KTC-26 or A498 were treated with various concentrations of RAD001 or AEE788 and tumor cell proliferation, tumor cell adhesion to vascular endothelial cells or to immobilized extracellular matrix proteins (laminin, collagen, fibronectin) evaluated. The anti-tumoral potential of RAD001 combined with AEE788 was also investigated. Both, asynchronous and synchronized cell cultures were used to subsequently analyze drug induced cell cycle manipulation. Analysis of cell cycle regulating proteins was done by western blotting. Results RAD001 or AEE788 reduced adhesion of RCC cell lines to vascular endothelium and diminished RCC cell binding to immobilized laminin or collagen. Both drugs blocked RCC cell growth, impaired cell cycle progression and altered the expression level of the cell cycle regulating proteins cdk2, cdk4, cyclin D1, cyclin E and p27. The combination of AEE788 and RAD001 resulted in more pronounced RCC growth inhibition, greater rates of G0/G1 cells and lower rates of S-phase cells than either agent alone. Cell cycle proteins were much more strongly altered when both drugs were used in combination than with single drug application. The synergistic effects were observed in an asynchronous cell culture model, but were more pronounced in synchronous RCC cell cultures. Conclusions Potent anti-tumoral activitites of the multikinase inhibitors AEE788 or RAD001 have been demonstrated. Most importantly, the simultaneous use of both AEE788 and RAD001 offered a distinct combinatorial benefit and thus may provide a therapeutic advantage over either agent employed as a monotherapy for RCC treatment
Histone deacetylases 1, 2 and 3 are highly expressed in prostate cancer and HDAC2 expression is associated with shorter PSA relapse time after radical prostatectomy
High activity of histone deacetylases (HDACs) causes epigenetic alterations associated with malignant cell behaviour. Consequently, HDAC inhibitors have entered late-phase clinical trials as new antineoplastic drugs. However, little is known about expression and function of specific HDAC isoforms in human tumours including prostate cancer. We investigated the expression of class I HDACs in 192 prostate carcinomas by immunohistochemistry and correlated our findings to clinicopathological parameters including follow-up data. Class I HDAC isoforms were strongly expressed in the majority of the cases (HDAC1: 69.8%, HDAC2: 74%, HDAC3: 94.8%). High rates of HDAC1 and HDAC2 expression were significantly associated with tumour dedifferentiation. Strong expression of all HDACs was accompanied by enhanced tumour cell proliferation. In addition, HDAC2 was an independent prognostic marker in our prostate cancer cohort. In conclusion, we showed that the known effects of HDACs on differentiation and proliferation of cancer cells observed in vitro can also be confirmed in vivo. The class I HDAC isoforms 1, 2 and 3 are differentially expressed in prostate cancer, which might be important for upcoming studies on HDAC inhibitors in this tumour entity. Also, the highly significant prognostic value of HDAC2 clearly deserves further study
Effects of the histone deacetylase inhibitor valproic acid on Notch signalling in human neuroblastoma cells
Neuroblastoma (NB), a sympathetically derived childhood tumour, shows characteristics of neuronal precursor cells, suggesting a halted differentiation process. We have previously shown that the Notch signalling cascade, a key player during normal neurogenesis, also might be involved in NB differentiation. Valproic acid (VPA), a well-tolerated antiepileptic drug, has been shown to induce differentiation and cell death of NB cells, possibly associated with its recently described HDAC inhibiting activity. Stimulation of NB cells with VPA led to increased cell death and phenotypic changes associated with differentiation, that is, neurite extension and upregulation of neuronal markers. VPA treatment also led to an activated Notch signalling cascade as shown by increased levels of intracellular Notch-1 and Hes-1, mimicking the initial phase of induced differentiation. These results reinforce that VPA potentially could be used in differentiation therapy of NB and that the effects in part could be a consequence of interference with the Notch signalling cascade
Pemphigus vulgaris antigen mRNA quantification for the staging of sentinel lymph nodes in head and neck cancer
Histone deacetylase inhibitors valproate and trichostatin A are toxic to neuroblastoma cells and modulate cytochrome P450 1A1, 1B1 and 3A4 expression in these cells
Histone deacetylase inhibitors such as valproic acid (VPA) and trichostatin A (TSA) were shown to exert antitumor activity. Here, the toxicity of both drugs to human neuroblastoma cell lines was investigated using MTT test, and IC50 values for both compounds were determined. Another target of this work was to evaluate the effects of both drugs on expression of cytochrome P450 (CYP) 1A1, 1B1 and 3A4 enzymes, which are known to be expressed in neuroblastoma cells. A malignant subset of neuroblastoma cells, so-called N-type cells (UKF-NB-3 cells) and the more benign S-type neuroblastoma cells (UKF-NB-4 and SK-N-AS cell lines) were studied from both two points of view. VPA and TSA inhibited the growth of neuroblastoma cells in a dose-dependent manner. The IC50 values ranging from 1.0 to 2.8 mM and from 69.8 to 129.4 nM were found for VPA and TSA, respectively. Of the neuroblastoma tested here, the N-type UKF-NB-3 cell line was the most sensitive to both drugs. The different effects of VPA and TSA were found on expression of CYP1A1, 1B1 and 3A4 enzymes in individual neuroblastoma cells tested in the study. Protein expression of all these CYP enzymes in the S-type SK-N-AS cell line was not influenced by either of studied drugs. On the contrary, in another S-type cell line, UKF-NB-4, VPA and TSA induced expression of CYP1A1, depressed levels of CYP1B1 and had no effect on expression levels of CYP3A4 enzyme. In the N-type UKF-NB-3 cell line, the expression of CYP1A1 was strongly induced, while that of CYP1B1 depressed by VPA and TSA. VPA also induced the expression of CYP3A4 in this neuroblastoma cell line
- …
