267 research outputs found

    Phylogenetic and functional analysis of the Cation Diffusion Facilitator (CDF) family: improved signature and prediction of substrate specificity

    Get PDF
    BACKGROUND The Cation Diffusion Facilitator (CDF) family is a ubiquitous family of heavy metal transporters. Much interest in this family has focused on implications for human health and bioremediation. In this work a broad phylogenetic study has been undertaken which, considered in the context of the functional characteristics of some fully characterised CDF transporters, has aimed at identifying molecular determinants of substrate selectivity and at suggesting metal specificity for newly identified CDF transporters. RESULTS Representative CDF members from all three kingdoms of life (Archaea, Eubacteria, Eukaryotes) were retrieved from genomic databases. Protein sequence alignment has allowed detection of a modified signature that can be used to identify new hypothetical CDF members. Phylogenetic reconstruction has classified the majority of CDF family members into three groups, each containing characterised members that share the same specificity towards the principally-transported metal, i.e. Zn, Fe/Zn or Mn. The metal selectivity of newly identified CDF transporters can be inferred by their position in one of these groups. The function of some conserved amino acids was assessed by site-directed mutagenesis in the poplar Zn2+ transporter PtdMTP1 and compared with similar experiments performed in prokaryotic members. An essential structural role can be assigned to a widely conserved glycine residue, while aspartate and histidine residues, highly conserved in putative transmembrane domains, might be involved in metal transport. The potential role of group-conserved amino acid residues in metal specificity is discussed. CONCLUSION In the present study phylogenetic and functional analyses have allowed the identification of three major substrate-specific CDF groups. The metal selectivity of newly identified CDF transporters can be inferred by their position in one of these groups. The modified signature sequence proposed in this work can be used to identify new hypothetical CDF members

    Serpentine Soils Do Not Limit Mycorrhizal Fungal Diversity

    Get PDF
    Background: Physiologically stressful environments tend to host depauperate and specialized biological communities. Serpentine soils exemplify this phenomenon by imposing well-known constraints on plants; however, their effect on other organisms is still poorly understood. Methodology/Principal Findings: We used a combination of field and molecular approaches to test the hypothesis that serpentine fungal communities are species-poor and specialized. We conducted surveys of ectomycorrhizal fungal diversity from adjacent serpentine and non-serpentine sites, described fungal communities using nrDNA Internal Transcribed Spacer (ITS) fragment and sequence analyses, and compared their phylogenetic community structure. Although we detected low fungal overlap across the two habitats, we found serpentine soils to support rich fungal communities that include representatives from all major fungal lineages. We failed to detect the phylogenetic signature of endemic clades that would result from specialization and adaptive radiation within this habitat. Conclusions/Significance: Our results indicate that serpentine soils do not constitute an extreme environment for ectomycorrhizal fungi, and raise important questions about the role of symbioses in edaphic tolerance and the maintenanc

    The influence of the ectomycorrhizal fungus Rhizopogon subareolatus on growth and nutrient element localisation in two varieties of Douglas fir (Pseudotsuga menziesii var. menziesii and var. glauca) in response to manganese stress

    Get PDF
    Acidification of forest ecosystems leads to increased plant availability of the micronutrient manganese (Mn), which is toxic when taken up in excess. To investigate whether ectomycorrhizas protect against excessive Mn by improving plant growth and nutrition or by retention of excess Mn in the hyphal mantle, seedlings of two populations of Douglas fir (Pseudotsuga menziesii), two varieties, one being menziesii (DFM) and the other being glauca (DFG), were inoculated with the ectomycorrhizal fungus Rhizopogon subareolatus in sand cultures. Five months after inoculation, half of the inoculated and non-inoculated seedlings were exposed to excess Mn in the nutrient solution for further 5 months. At the end of this period, plant productivity, nutrient concentrations, Mn uptake and subcellular compartmentalisation were evaluated. Non-inoculated, non-stressed DFM plants produced about 2.5 times more biomass than similarly treated DFG. Excess Mn in the nutrient solution led to high accumulation of Mn in needles and roots but only to marginal loss in biomass. Colonisation with R. subareolatus slightly suppressed DFM growth but strongly reduced that of DFG (−50%) despite positive effects of mycorrhizas on plant phosphorus nutrition. Growth reductions of inoculated Douglas fir seedlings were unexpected since the degree of mycorrhization was not high, i.e. ca. 30% in DFM and 8% in DFG. Accumulation of high Mn was not prevented in inoculated seedlings. The hyphal mantle of mycorrhizal root tips accumulated divalent cations such as Ca, but not Mn, thus not providing a barrier against excessive Mn uptake into the plants associated with R. subareolatus

    The fate of [14Cglutamate and [14Cmalate in birch roots is strongly modified under inoculation with Paxillus involutus

    No full text
    International audienc

    Common functions or only phylogenetically related? The large family of PLAC8 motif-containing/PCR genes

    Full text link
    PLAC8 motif-containing proteins form a large family and members can be found in fungi, algae, higher plants and animals. They include the PCR proteins of plants. The name giving PLAC8 domain was originally found in a protein residing in the spongiotrophoblast layer of the placenta of mammals. A further motif found in a large number of these proteins including several PCR proteins is the CCXXXXCPC or CLXXXXCPC motif. Despite their wide distribution our knowledge about the function of these proteins is very limited. For most of them two membrane-spanning α-helices are predicted, indicating that they are membrane associated or membrane intrinsic proteins. In plants PLAC8 motif-containing proteins have been described to be implicated in two very different functions. On one hand, it has been shown that they are involved in the determination of fruit size and cell number. On the other hand, two members of this family, AtPCR1 and AtPCR2 play an important role in transport of heavy metals such as cadmium or zinc. Transport experiments and approaches to model the 3_D structure of these proteins indicate that they could act as transporters for these divalent cations by forming homomultimers. In this minireview we discuss the present knowledge about this protein family and try to give an outlook on how to integrate the different proposed functions into a common picture about the role of PLAC8 motif-containing proteins
    corecore