29 research outputs found

    The equilibria that allow bacterial persistence in human hosts

    Full text link
    We propose that microbes that have developed persistent relationships with human hosts have evolved cross-signalling mechanisms that permit homeostasis that conforms to Nash equilibria and, more specifically, to evolutionarily stable strategies. This implies that a group of highly diverse organisms has evolved within the changing contexts of variation in effective human population size and lifespan, shaping the equilibria achieved, and creating relationships resembling climax communities. We propose that such ecosystems contain nested communities in which equilibrium at one level contributes to homeostasis at another. The model can aid prediction of equilibrium states in the context of further change: widespread immunodeficiency, changing population densities, or extinctions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62883/1/nature06198.pd

    Parabens inhibit fatty acid amide hydrolase: A potential role in paraben-enhanced 3T3-L1 adipocyte differentiation

    No full text
    Parabens are a class of small molecules that are regularly used as preservatives in a variety of personal care products. Several parabens, including butylparaben and benzylparaben, have been found to interfere with endocrine signaling and to stimulate adipocyte differentiation. We hypothesized these biological effects could be due to interference with the endocannabinoid system and identified fatty acid amide hydrolase (FAAH) as the direct molecular target of parabens. FAAH inhibition by parabens yields mixed-type and time-independent kinetics. Additionally, structure activity relationships indicate FAAH inhibition is selective for the paraben class of compounds and the more hydrophobic parabens have higher potency. Parabens enhanced 3T3-L1 adipocyte differentiation in a dose dependent fashion, different from two other FAAH inhibitors URB597 and PF622. Moreover, parabens, URB597 and PF622 all failed to enhance AEA-induced differentiation. Furthermore, rimonabant, a cannabinoid receptor 1 (CB(1))-selective antagonist, did not attenuate paraben-induced adipocyte differentiation. Thus, adipogenesis mediated by parabens likely occurs through modulation of endocannabinoids, but cell differentiation is independent of direct activation of CB(1) by endocannabinoids

    Effect of the electrolyte on the electrolysis and photoelectrolysis of synthetic methyl paraben polluted wastewater

    No full text
    In this work, the electrochemical oxidation of methyl paraben (MeP) with diamond electrodes is studied. Results point out that this preservative can be easily removed from wastewater, either in sulfate or chloride media. Pollutant removal is faster in chloride media due to the chlorination of the molecule. However, mineralization is faster in sulfate media. Current density does not have a clear influence on the efficiency, explained by a mediated oxidation control of the process. Irradiation by UV light produces a synergistic effect on the process, which is greater in sulfate than in chloride media, a behavior that could be initially understood in terms of the formation of sulfate and chloride radicals. However, chemical tests showed that persulfate is not active for the oxidation of MeP neither in dark conditions nor under UV irradiation and that hypochlorite is active in the chlorination of the MeP molecule but not in the mineralization. Consequently, these results can be better explained considering the oxidizing effect of ozone and hydrogen peroxide, which are produced during the electrolysis on the surface of diamond, and that within the reaction conditions undertaken, are unstable and decompose to hydroxyl radicals. Regarding electrolysis in chloride media, although chlorates or perchlorates are produced, UV light significantly delays the appearance of both species

    Targeting Integrin-Dependent Adhesion and Signaling with 3-Arylquinoline and 3-Aryl-2-Quinolone Derivatives: A new Class of Integrin Antagonists

    No full text
    We previously reported the anti-migratory function of 3-aryl-2-quinolone derivatives, chemically close to flavonoids (Joseph et al., 2002). Herein we show that 3-arylquinoline or 3-aryl-2-quinolone derivatives disrupt cell adhesion in a dose dependent and reversible manner yet antagonized by artificial integrin activation such as manganese. Relying on this anti-adhesive activity, a Structure-Activity Relationship (SAR) study was established on 20 different compounds to throw the bases of future optimization strategies. Active drugs efficiently inhibit platelet spreading, aggregation, and clot retraction, processes that rely on αllbβ3 integrin activation and clustering. In vitro these derivatives interfere with β3 cytoplasmic tail interaction with kindlin-2 in pulldown assays albeit little effect was observed with pure proteins suggesting that the drugs may block an alternative integrin activation process that may not be directly related to kindlin recruitment. Ex vivo, these drugs blunt integrin signaling assayed using focal adhesion kinase auto-phosphorylation as a read-out. Hence, 3-arylquinoline and 3-aryl-2-quinolone series are a novel class of integrin activation and signaling antagonists

    Ruthenium Nanoparticles Supported on CeO 2

    No full text
    This study developed a heterogeneous catalytic permanganate oxidation system with ceria supported ruthenium, Ru/CeO2 (0.8 parts per thousand as Ru), as catalyst for the first time. The catalytic performance of Ru/CeO2 toward butylparaben (BP) oxidation by permanganate was strongly dependent on its dosage, pH, permanganate concentration and temperature. The presence of 1.0 g L-1 Ru/CeO2 increased the oxidation rate of BP by permanganate at pH 4.0-8.0 by 3-96 times. The increase in Ru/CeO2 dosage led to a progressive enhancement in the oxidation rate of BP by permanganate at neutral pH. The XANES analysis revealed that (1) Ru was deposited on the surface of CeO2 as Ru-III; (2) Ru-III was oxidized by permanganate to its higher oxidation state Ru-VI and Ru-VII, which acted as the co-oxidants in BP oxidation; (3) Ru-VI and Ru-VII were reduced by BP to its initial state of Ru-III. Therefore, Ru/CeO2 acted as an electron shuttle in catalytic permanganate oxidation process. LC-MS/MS analysis implied that BP was initially attacked by permanganate or Ru-VI and Ru-VII at the aromatic ring, leading to the formation of various hydroxyl-substituted and ring-opening products. Ru/CeO2 could maintain its catalytic activity during the six successive runs. In conclusion, catalyzing permanganate oxidation with Ru/CeO2 is a promising technology for degrading phenolic pollutants in water treatment
    corecore