232 research outputs found
Electrodes for sealed secondary batteries
Self-supporting membrane electrode structures, in which active ingredients and graphite are incorporated in a polymeric matrix, improve performance of electrodes in miniature, sealed, alkaline storage batteries
Possible phases of two coupled n-component fermionic chains
A two-leg ladder with -component fermionic fields in the chains has been
considered using an analytic renormalization group method. The fixed points and
possible phases have been determined for generic filling as well as for a
half-filled system and for the case when one of the subbands is half filled. A
weak-coupling Luttinger-liquid phase and several strong-coupling gapped phases
have been found. In the Luttinger liquid phase, for the most general spin
dependence of the couplings, all modes have different velocities if the
interband scattering processes are scaled out, while doubly degenerate
modes appear if the interband scattering processes remain finite. The role of
backward-scattering, charge-transfer and umklapp processes has been analysed
using their bosonic form and the possible phases are characterized by the
number of gapless modes. As a special case the SU() symmetric Hubbard ladder
has been investigated numerically. It was found that this model does not scale
to the Luttinger liquid fixed point. Even for generic filling gaps open up in
the spectrum of the spin or charge modes, and the system is always insulator in
the presence of umklapp processes
Instrument for measuring potentials on two dimensional electric field plots Patent
Instrument for measuring potentials on two dimensional electric field plo
Interchain coherence of coupled Luttinger liquids at all orders in perturbation theory
We analyze the problem of Luttinger liquids coupled via a single-particle
hopping \tp and introduce a systematic diagrammatic expansion in powers of
\tp. An analysis of the scaling of the diagrams at each order allows us to
determine the power-law behavior versus \tp of the interchain hopping and of
the Fermi surface warp. In particular, for strong interactions, we find that
the exponents are dominated by higher-order diagrams producing an enhanced
coherence and a failure of linear-response theory. Our results are valid at any
finite order in \tp for the self-energy.Comment: 4 pages, 3 ps figures. Accepted for publication in Phys. Rev. Let
Hall Effect in a Quasi-One-Dimensional System
We consider the Hall effect in a system of weakly coupled one-dimensional
chains with Luttinger interaction within each chain. We construct a
perturbation theory in the inter-chain hopping term and find that there is a
power law dependence of the Hall conductivity on the magnetic field with an
exponent depending on the interaction constant. We show that this perturbation
theory becomes valid if the magnetic field is sufficiently large.Comment: 20 page
Spin Gap and Superconductivity in Weakly Coupled Ladders: Interladder One-particle vs. Two-particle Crossover
Effects of the interladder one-particle hopping, , on the
low-energy asymptotics of a weakly coupled Hubbard ladder system have been
studied, based on the perturbative renormalization-group approach. We found
that for finite intraladder Hubbard repulsion, , there exists a crossover
value of the interladder one-particle hopping, . For
, the spin gap metal (SGM) phase of the isolated
ladder transits at a finite transition temperature, , to the d-wave
superconducting (SCd) phase via a two-particle crossover. In the temperature
region, , interladder coherent Josephson tunneling of the Cooper pairs
occurs, while the interladder coherent one-particle process is strongly
suppressed. For , around a crossover temperature,
, the system crosses over to the two-dimensional (2D) phase via a
one-particle crossover. In the temperature region, , the
interladdercoherent band motion occurs.Comment: 4 pages, 5 eps figures, uses jpsj.st
Dimensional crossover and metal-insulator transition in quasi-two-dimensional disordered conductors
We study the metal-insulator transition (MIT) in weakly coupled disordered
planes on the basis of a Non-Linear Sigma Model (NLM). Using two
different methods, a renormalization group (RG) approach and an auxiliary field
method, we calculate the crossover length between a 2D regime at small length
scales and a 3D regime at larger length scales. The 3D regime is described by
an anisotropic 3D NLM with renormalized coupling constants. We obtain
the critical value of the single particle interplane hopping which separates
the metallic and insulating phases. We also show that a strong parallel
magnetic field favors the localized phase and derive the phase diagram.Comment: 16 pages (RevTex), 4 poscript figure
Crossover from Luttinger- to Fermi-liquid behavior in strongly anisotropic systems in large dimensions
We consider the low-energy region of an array of Luttinger liquids coupled by
a weak interchain hopping. The leading logarithmic divergences can be re-summed
to all orders within a self-consistent perturbative expansion in the hopping,
in the large-dimension limit. The anomalous exponent scales to zero below the
one-particle crossover temperature. As a consequence, coherent quasiparticles
with finite weight appear along the whole Fermi surface. Extending the
expansion self-consistently to all orders turns out to be crucial in order to
restore the correct Fermi-liquid behavior.Comment: Shortened version to appear in Physical Review Letter
One particle interchain hopping in coupled Hubbard chains
Interchain hopping in systems of coupled chains of correlated electrons is
investigated by exact diagonalizations and Quantum-Monte-Carlo methods. For two
weakly coupled Hubbard chains at commensurate densities (e.g. n=1/3) the
splitting at the Fermi level between bonding and antibonding bands is strongly
reduced (but not suppressed) by repulsive interactions extending to a few
lattice spacings. The magnitude of this reduction is directly connected to the
exponent of the 1D Luttinger liquid. However, we show that the
incoherent part of the single particle spectral function is much less affected
by the interchain coupling. This suggests that incoherent interchain hopping
could occur for intermediate values.Comment: 4 pages, LaTeX 3.0, 7 PostScript figures in uuencoded for
Impurity-induced stabilization of Luttinger liquid in quasi-one-dimensional conductors
It is shown theoretically that the Luttinger liquid phase in
quasi-one-dimensional conductors can exist in the presence of impurities in a
form of a collection of bounded Luttinger liquids. The conclusion is based upon
the observation by Kane and Fisher that a local impurity potential in Luttinger
liquid acts, at low energies, as an infinite barrier. This leads to a discrete
spectrum of collective charge and spin density fluctuations, so that interchain
hopping can be considered as a small parameter at temperatures below the
minimum excitation energy of the collective modes. The results are compared
with recent experimental observation of a Luttinger-liquid-like behavior in
thin NbSe and TaS wires.Comment: 11 pages, revtex, final version published in JETP Lett
- …
