727 research outputs found

    Insights into a dinoflagellate genome through expressed sequence tag analysis

    Get PDF
    BACKGROUND: Dinoflagellates are important marine primary producers and grazers and cause toxic "red tides". These taxa are characterized by many unique features such as immense genomes, the absence of nucleosomes, and photosynthetic organelles (plastids) that have been gained and lost multiple times. We generated EST sequences from non-normalized and normalized cDNA libraries from a culture of the toxic species Alexandrium tamarense to elucidate dinoflagellate evolution. Previous analyses of these data have clarified plastid origin and here we study the gene content, annotate the ESTs, and analyze the genes that are putatively involved in DNA packaging. RESULTS: Approximately 20% of the 6,723 unique (11,171 total 3'-reads) ESTs data could be annotated using Blast searches against GenBank. Several putative dinoflagellate-specific mRNAs were identified, including one novel plastid protein. Dinoflagellate genes, similar to other eukaryotes, have a high GC-content that is reflected in the amino acid codon usage. Highly represented transcripts include histone-like (HLP) and luciferin binding proteins and several genes occur in families that encode nearly identical proteins. We also identified rare transcripts encoding a predicted protein highly similar to histone H2A.X. We speculate this histone may be retained for its role in DNA double-strand break repair. CONCLUSION: This is the most extensive collection to date of ESTs from a toxic dinoflagellate. These data will be instrumental to future research to understand the unique and complex cell biology of these organisms and for potentially identifying the genes involved in toxin production

    Drug-induced disseminated intravascular coagulation: a pharmacovigilance study on World Health Organization’s database

    Get PDF
    Background: Disseminated intravascular coagulation (DIC) occurs in several clinical conditions, including drug therapy. We aim to investigate the association between the administration of several drug classes and the onset of DIC by using the reports of Adverse Drug Reactions (ADR) collected in Vigibase, the World Health Organization (WHO) database of ADR. Methods: We collected reports of drug-related DIC from 1968 to September 2015, classified in Vigibase according to the MedDRA (Medical Dictionary for Regulatory Activities) term “Disseminated intravascular coagulation”. A disproportionality analysis using Reporting Odds Ratio (ROR) with 95% Confidence Interval (CI95%) was performed. Results: Overall, 4653 reports of drug-associated DIC were retrieved and the 75.9% of them was serious according to WHO seriousness criteria. DIC was significantly (ROR > 1, lower limit of CI95% > 1) associated with 88 drugs, mainly antineoplastic agents, antithrombotic agents and antibacterials for systemic use. Among of the most frequently reported individual drugs we found dabigatran (94 reports) ROR = 1.34 (CI95% 1.08–1.67), oxaliplatin and bevacizumab both with 75 reports and ROR = 1.77 (1.38–2.27) and 2.02 (1.57–2.61), respectively. Conclusion: A substantial number of drugs, widely used in the clinical practice, may be associated with the potential occurrence of DIC. For many of these drugs, the ADR is not acknowledged in the corresponding Summary of Product Characteristics. The high number of drugs involved underlines the importance of evaluate this condition such as an ADR that might occur during drug therapy

    Time and concentration dependency of MacroGard® induced apoptosis

    Get PDF
    In previous studies an effect of β-glucan on apoptosis in fish was noted and in this investigation we determine the time and concentration dependency of this effect. Primary cell cultures of pronephric carp cells were incubated for 6, 24, 48 h with various concentrations ranging from 0 to 1000 μg/ml of MacroGard® β-glucan. Apoptosis was monitored via acridine orange staining. Results indicate a clear effect of time and concentration on the induction of apoptosis in vitro, with only concentration ≥500 μg/ml causing significantly higher percentages of apoptotic cells. Apoptosis was detected after 6 h. This concentration dependent effect has to be considered when studying apoptosis in relation to immunostimulation

    Level of therapeutic innovation from the registration studies of the new drugs for the prophylaxis of migraine

    Get PDF
    What is known and objective: Migraine is one of the most prevalent and disabling medical illnesses. Preventive drugs are used to reduce the frequency, severity, and duration of attacks. Most patients were no longer on their medication due to contraindications or poor clinical response. Therefore, there is need for novel prophylactic agents for migraine. New preventive treatments are those of the class of calcitonin gene related peptide (CGRP)-targeting therapies. We aimed to assess the real level of therapeutic innovation of these new drugs. Methods: The information on the new drugs was collected from several documents, including the European public assessment reports. The level of therapeutic innovation was assessed with the algorithm published by some of us in 2006. Results: All new approved drugs (eptinezumab, galcanezumab, fremanezumab, erenumab) are indicated for the prophylaxis of migraine in adults who have at least four migraine days for month. All these drugs have been tested only in comparison to placebo. Their level of therapeutic innovation was only modest, that is, the lowest value of our algorithm. Discussion: The new monoclonal antibodies of the class of CGRP targeting therapies have been authorized with efficacy data only against placebo. They do not offer additional clinical benefits compared to available therapies for the prevention of migraine attacks, with the exception of a lower frequency of administration and a more rapid effect. All this assigns to these drugs only a modest role in therapy according to our algorithm for therapeutic innovation with a significantly higher cost than similar therapies

    Simulation of a flash-flood event over the Adriatic Sea with a high-resolution atmosphere–ocean–wave coupled system

    Get PDF
    On the morning of September 26, 2007, a heavy precipitation event (HPE) affected the Venice lagoon and the neighbouring coastal zone of the Adriatic Sea, with 6-h accumulated rainfall summing up to about 360 mm in the area between the Venetian mainland, Padua and Chioggia. The event was triggered and maintained by the uplift over a convergence line between northeasterly flow from the Alps and southeasterly winds from the Adriatic Sea. Hindcast modelling experiments, using standalone atmospheric models, failed to capture the spatial distribution, maximum intensity and timing of the HPE. Here we analyze the event by means of an atmosphere-wave-ocean coupled numerical approach. The combined use of convection permitting models with grid spacing of 1 km, high-resolution sea surface temperature (SST) fields, and the consistent treatment of marine boundary layer fluxes in all the numerical model components are crucial to provide a realistic simulation of the event. Inaccurate representations of the SST affect the wind magnitude and, through this, the intensity, location and time evolution of the convergence zone, thus affecting the HPE prediction. © 2021, The Author(s)

    Coupled wave-2D hydrodynamics modeling at the Reno River mouth (Italy) under climate change scenarios

    Get PDF
    This work presents the results of the numerical study implemented for the natural area of Lido di Spina, a touristic site along the Italian coast of the North Adriatic Sea, close to the mouth of River Reno. High-resolution simulations of nearshore dynamics are carried out under climate change conditions estimated for the site. The adopted modeling chain is based on the implementation of multiple-nested, open-source numerical models. More specifically, the coupled wave-2D hydrodynamics runs, using the open-source TELEMAC suite, are forced at the offshore boundary by waves resulting from the wave model (SWAN) simulations for the Adriatic Sea, and sea levels computed following a joint probability analysis approach. The system simulates presentday scenarios, as well as conditions reflecting the high IPCC greenhouse concentration trajectory named RCP8.5 under predicted climate changes. Selection of sea storms directed from SE (Sirocco events) and E-NE (Bora events) is performed together with Gumbel analysis, in order to define ordinary and extreme sea conditions. The numerical results are here presented in terms of local parameters such as wave breaking position, alongshore currents intensity and direction and flooded area, aiming to provide insights on how climate changes may impact hydrodynamics at a site scale. Although the wave energy intensity predicted for Sirocco events is expected to increase only slightly, modifications of the wave dynamics, current patterns, and inland flooding induced by climate changes are expected to be significant for extreme conditions, especially during Sirocco winds, with an increase in the maximum alongshore currents and in the inundated area compared to past conditions. \ua9 2018 by the authors

    Evaluation of the safety profile of rotavirus vaccines: a pharmacovigilance analysis on American and European data

    Get PDF
    Rotaviruses (RVs) are the most common cause of severe diarrheal disease. To date two rotavirus oral vaccines are licensed: Rotarix and Rotateq. Our aim was to contribute to the post-marketing evaluation of these vaccines safety profile. We collected all RV vaccines-related reports of Adverse Events Following Immunization (AEFI) in US Vaccine Adverse Events Reporting System (VAERS) and VigiBase between January 2007 and December 2017. A disproportionality analysis using Reporting Odds Ratio (ROR) was performed. A total of 17,750 reports in VAERS and 6,358 in VigiBase were retrieved. In VAERS, 86.2% of the reports concerned RotaTeq, whereas in VigiBase 67.7% of them involved Rotarix. Across the databases, diarrhea (1,672 events in VAERS, 1,961 in VigiBase) and vomiting (1,746 in VAERS, 1,508 in VigiBase) were the most reported AEFIs. Noteworthy, the RV vaccines-intussusception pair showed a ROR greater than 20 in both databases. Some new potential safety signals emerged such as fontanelle bulging, hypotonic-hyporesponsive episode, livedo reticularis, and opisthotonus. Overall, our data show that most of the reported AEFIs are listed in the Summary of Product Characteristics (SPCs). However, there remains the need to investigate the potential safety signals arose from this analysis, in order to complete the description of the AEFIs

    Real-life safety profile of mRNA vaccines for COVID-19: An analysis of VAERS database

    Get PDF
    Introduction: Since the first COVID-19 messenger RNA vaccines became available globally for emergency or conditional use, post-marketing surveillance activities have been implemented for the monitoring of any adverse events that might arise in daily clinical practice and were not detected earlier during clinical trials. Methods: Safety data concerning the BNT162b2 and the mRNA-1273 COVID-19 vaccines were collected from the Vaccine Adverse Event Reporting System (VAERS) for the period from December 2020 to October 15, 2021. In addition to a descriptive analysis of individuals who experienced an adverse event after vaccination, a case-non-case analysis was performed by using the Reporting Odds Ratio with 95 % confidence interval as statistical parameter for detecting differences in reporting rates between the two mRNA vaccines. Results: At the cut-off date, a total of 758,040 reports were submitted to VAERS, of which 439,401 were related to the Pfizer-BioNTech (BNT162b2) vaccine and 318,639 to the Moderna vaccine (mRNA-1273). Most common adverse events following immunization for both mRNA vaccines were headache, fatigue, pyrexia, dizziness, nausea, pain, chills, and pain in extremity. A disproportionality was found for BNT162b2 as compared with mRNA-1273 for some events of special interest, such as myocarditis [ROR 2.00; 95 % confidence interval (CI), 1.93–2.06], Bell's palsy (1.34; 1.29–1.39), and anaphylactic shock (3.23; 2.96–3.53). Conclusion: Even if some rare adverse events were identified, our survey of post-marketing surveillance has provided further evidence of the favourable safety profile of mRNA vaccines

    Transcriptomic and Epigenetic Regulation of Disuse Atrophy and the Return to Activity in Skeletal Muscle

    Get PDF
    Physical inactivity and disuse are major contributors to age-related muscle loss. Denervation of skeletal muscle has been previously used as a model with which to investigate muscle atrophy following disuse. Although gene regulatory networks that control skeletal muscle atrophy after denervation have been established, the transcriptome in response to the recovery of muscle after disuse and the associated epigenetic mechanisms that may function to modulate gene expression during skeletal muscle atrophy or recovery have yet to be investigated. We report that silencing the tibialis anterior muscle in rats with tetrodotoxin (TTX)—administered to the common peroneal nerve—resulted in reductions in muscle mass of 7, 29, and 51% with corresponding reductions in muscle fiber cross-sectional area of 18, 42, and 69% after 3, 7, and 14 d of TTX, respectively. Of importance, 7 d of recovery, during which rodents resumed habitual physical activity, restored muscle mass from a reduction of 51% after 14 d TTX to a reduction of only 24% compared with sham control. Returning muscle mass to levels observed at 7 d TTX administration (29% reduction). Transcriptome-wide analysis demonstrated that 3714 genes were differentially expressed across all conditions at a significance of P ≤ 0.001 after disuse-induced atrophy. Of interest, after 7 d of recovery, the expression of genes that were most changed during TTX had returned to that of the sham control. The 20 most differentially expressed genes after microarray analysis were identified across all conditions and were cross-referenced with the most frequently occurring differentially expressed genes between conditions. This gene subset included myogenin (MyoG), Hdac4, Ampd3, Trim63 (MuRF1), and acetylcholine receptor subunit α1 (Chrna1). Transcript expression of these genes and Fboxo32 (MAFbx), because of its previously identified role in disuse atrophy together with Trim63 (MuRF1), were confirmed by real-time quantitative RT-PCR, and DNA methylation of their promoter regions was analyzed by PCR and pyrosequencing. MyoG, Trim63 (MuRF1), Fbxo32 (MAFbx), and Chrna1 demonstrated significantly decreased DNA methylation at key time points after disuse-induced atrophy that corresponded with significantly increased gene expression. Of importance, after TTX cessation and 7 d of recovery, there was a marked increase in the DNA methylation profiles of Trim63 (MuRF1) and Chrna1 back to control levels. This also corresponded with the return of gene expression in the recovery group back to baseline expression observed in sham-operated controls. To our knowledge, this is the first study to demonstrate that skeletal muscle atrophy in response to disuse is accompanied by dynamic epigenetic modifications that are associated with alterations in gene expression, and that these epigenetic modifications and gene expression profiles are reversible after skeletal muscle returns to normal activity
    corecore