614 research outputs found

    Transport efficiency and dynamics of hydraulic fracture networks

    Get PDF
    Acknowledgments This study is carried out within the framework of DGMK (German Society for Petroleum and Coal Science and Technology) research project 718 “Mineral Vein Dynamics Modeling,” which is funded by the companies ExxonMobil Production Deutschland GmbH, GDF SUEZ E&P Deutschland GmbH, RWE Dea AG and Wintershall Holding GmbH, within the basic research programme of the WEG Wirtschaftsverband Erdöl- und Erdgasgewinnung e.V. We thank the companies for their financial support and their permission to publish our results. We further acknowledge support by Deutsche Forschungsgemeinschaft and Open Access Publishing Fund of University of Tübingen.Peer reviewedPublisher PD

    Micro-dynamics of ice

    Get PDF
    No abstract available

    A new stylolite classification scheme to estimate compaction and local permeability variations

    Get PDF
    This study was carried out within the framework of DGMK (German Society for Petroleum and Coal Science and Technology) research project 718 “Mineral Vein Dynamics Modeling”, which is funded by the companies ExxonMobil Production Deutschland GmbH, GDF SUEZ E&P Deutschland GmbH, DEA Deutsche Erdoel AG and Wintershall Holding GmbH, within the basic research program of the WEG Wirtschaftsverband Erdoel- und Erdgasgewinnung e.V. We thank the companies for their financial support and their permission to publish these results. This work has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 31688. The Zechstein data were collected with the help of Simon Gast. We thank Jean-Pierre Gratier and an anonymous reviewer for their comments that improved an earlier version of the manuscript.Peer reviewedPostprin

    The Jabal Akhdar Dome in the Oman Mountains : evolution of a dynamic fracture system

    Get PDF
    Acknowledgments: This study was carried out within the framework of DGMK (German Society for Petroleum and Coal Science and Technology) research project 718 “Mineral Vein Dynamics Modelling,” which is funded by the companies ExxonMobil Production Deutschland GmbH, GDF SUEZ E&P Deutschland GmbH, RWE Dea AG and Wintershall Holding GmbH, within the basic research program of the WEG Wirtschaftsverband Erdo¨l- und Erdgasgewinnung e.V. We thank the companies for their financial support and their permission to publish these results. The German University of Technology in Oman (GU-Tech) is acknowledged for its logistic support. We gratefully acknowledge the reviewers Andrea Billi and Jean-Paul Breton, whose constructive reviews greatly improved the manuscriptPeer reviewedPreprin

    Greenland Ice Sheet - Higher non-linearity of ice flow significantly reduces estimated basal motion

    Get PDF
    In times of warming in polar regions, the prediction of ice sheet discharge is of utmost importance to society, because of its impact on sea level rise. In simulations the flow rate of ice is usually implemented as proportional to the differential stress to the power of the exponent n=3. This exponent influences the softness of the modeled ice, as higher values would produce faster flow under equal stress. We show that the stress exponent, which best fits the observed state of the Greenland Ice Sheet, equals n=4. Our results, which are not dependent on a possible basal sliding component of flow, indicate that most of the interior northern ice sheet is currently frozen to bedrock, except for the large ice streams and marginal ice. Ice in the polar ice sheets flows towards the oceans under its own weight. Knowing how fast the ice flows is of crucial importance to predict future sea level rise. The flow has two components: (1) internal shearing flow of ice and (2) basal motion, which is sliding along the base of ice sheets, especially when the ice melts at this base. To determine the first component we need to know how "soft" the ice is. By considering the flow velocities at the surface of the northern Greenland Ice Sheet and calculating the stresses that cause the flow, we determined that the ice is effectively softer than is usually assumed. Previous studies indicated that the base of the ice is thawed in large parts (up to about 50%) of the Greenland Ice Sheet. Our study shows that that is probably overestimated, because these studies assumed ice to be harder than it actually is. Our new assessment reduces the area with basal motion and thus melting to about 6-13% in the Greenland study area

    Fluid mixing from below in unconformity-related hydrothermal ore deposits

    Get PDF
    This research was partly funded by German Research Foundation (DFG) grant BO 1776/8 and was carried out within the framework of DGMK (German Society for Petroleum and Coal Science and Technology) project 718, funded by the companies ExxonMobil Production Deutschland GmbH, GDF SUEZ E&P Deutschland GmbH, RWE Dea AG, and Wintershall Holding GmbH. Assistance by Simone Kaulfuss, Gabi Stoschek, Sara Ladenburger, Mathias Burisch, and Bernd Steinhilber with sample preparation and crush-leach analyses is gratefully acknowledged. We thank Steve Cox and two anonymous reviewers for their critical comments.Peer reviewedPostprin

    Modelling the influence of air on the deformation and recrystallisation mechanisms in polar firn and ice

    Get PDF
    Within their upper approximately thousand meters, ice sheets on Earth contain a significant amount of air and air hydrates below. In the permeable firn, this air is still exchanging with the atmosphere and is under atmospheric pressure, whereas the air bubbles are entrapped at the firn-ice transition 60 – 120 m depth. As recent research showed, the presence of air bubbles can significantly influence microdynamical processes such as grain growth and grain boundary migration (Azuma et al., 2012, Roessiger et al., 2014). Understanding the dominant deformation mechanisms has essential implications on paleo-atmosphere research and allows more realistic modelling of ice sheet dynamics. Therefore, numerical models were set up and performed focussing on the implications of the presence of bubbles on recrystallisation and the mechanical properties of ice with air inclusions. The 2D numerical microstructural modelling platform Elle was coupled to the full-field crystal plasticity code of Lebensohn (2001), which is using a Fast Fourier Transform (FFT) following the approach by Griera et al. (2013). Taking into account the mechanical anisotropy of ice, FFT calculates the viscoplastic response of polycrystalline and polyphase materials that deform by dislocation glide, predicts lattice re-orientation and using the local gradient of the strain-rate field, dislocation densities are calculated. FFT was used for the simulation of dynamic recrystallization of pure ice by Montagnat et al. (2013). Polyphase grain boundary migration driven by surface energy and internal strain energy reduction was incorporated in the code and now also enables us to model deformation of ice with air bubbles. The approach is based on the methodology of Becker et al. (2008) and Roessiger et al. (2014). During Deformation, spherical to elliptical bubble shapes are only maintained, when surface energy based recrystallisation is activated, whereas they quickly collapse at low strains in the absence of recrystallisation. The presence of bubbles leads to increased localization of stress, strain and dislocation densities, a reduction of the bulk strength of the bubbly ice is observed. Furthermore, strain-induced grain boundary migration already occuring in the uppermost levels of ice sheets (Kipfstuhl et al. 2009, Weikusat et al. 2009) is confirmed by our modelling. References Azuma, N., Miyakoshi, T., Yokoyama, S., Takata, M., 2012. Journal of Structural Geology 42, 184- 193. Becker, J.K., Bons, P.D., Jessell, M.W., 2008. Computers & Geosciences 34, 201-212. Bons, P.D., Koehn, D., Jessell, M.W. (Eds.), 2008. Microdynamic Simulation. Springer, Berlin. Kipfstuhl, S., Faria, S.H., Azuma, N., Freitag, J., Hamann, I., Kaufmann, P., Miller, H., Weiler, K., Wilhelms, F., 2009. Journal of Geophysical Research 114, B05204. Lebensohn, R.A., 2001. Acta Mater 49 (14), 2723e2737. Montagnat, M., Castelnau, O., Bons, P.D., Faria, S.H., Gagliardini, O., Gillet-Chaulet, F., Grennerat, F., Griera, A., Lebensohn, R.A., Moulinec, H., Roessiger, J., Suquet, P., 2014. Journal of Structural Geology 61, 78-108 Rößiger, J., Bons, P.D., Faria, S.H., 2014. Journal of Structural Geology 61, 123-132 Weikusat, I., Kipfstuhl, S., Faria, S.H., Azuma, N., Miyamoto, A., 2009. Journal of Glaciology 55, 461-472

    Strain localisation and dynamic recrystallisation in the ice-air aggregate: A numerical study

    Get PDF
    We performed numerical simulations on the micro-dynamics of ice with air inclusions as a second phase. This provides first results of a numerical approach to model dynamic recrystallisation in polyphase crystalline aggregates. Our aim was to investigate the rheological effects of air inclusions and explain the onset of dynamic recrystallisation in the permeable firn. The simulations employ a full field theory crystal plasticity code coupled to codes simulating dynamic recrystallisation processes and predict time-resolved microstructure evolution in terms of lattice orientations, strain distribution, grain sizes and grain boundary network. Results show heterogeneous deformation throughout the simulations and indicate the importance of strain localisation controlled by air inclusions. This strain localisation gives rise to locally increased energies that drive dynamic recrystallisation and induce heterogeneous microstructures that are coherent with natural firn microstructures from EPICA Dronning Maud Land ice coring site in Antarctica. We conclude that although overall strains and stresses in firn are low, strain localisation associated with locally increased strain energies can explain the occurrence of dynamic recrystallisation
    corecore