65 research outputs found

    First Results from the AMoRE-Pilot neutrinoless double beta decay experiment

    Get PDF
    The Advanced Molybdenum-based Rare process Experiment (AMoRE) aims to search for neutrinoless double beta decay (0νββ\nu\beta\beta) of 100^{100}Mo with \sim100 kg of 100^{100}Mo-enriched molybdenum embedded in cryogenic detectors with a dual heat and light readout. At the current, pilot stage of the AMoRE project we employ six calcium molybdate crystals with a total mass of 1.9 kg, produced from 48^{48}Ca-depleted calcium and 100^{100}Mo-enriched molybdenum (48depl^{48\textrm{depl}}Ca100^{100}MoO4_4). The simultaneous detection of heat(phonon) and scintillation (photon) signals is realized with high resolution metallic magnetic calorimeter sensors that operate at milli-Kelvin temperatures. This stage of the project is carried out in the Yangyang underground laboratory at a depth of 700 m. We report first results from the AMoRE-Pilot 0νββ0\nu\beta\beta search with a 111 kg\cdotd live exposure of 48depl^{48\textrm{depl}}Ca100^{100}MoO4_4 crystals. No evidence for 0νββ0\nu\beta\beta decay of 100^{100}Mo is found, and a upper limit is set for the half-life of 0νββ\nu\beta\beta of 100^{100}Mo of T1/20ν>9.5×1022T^{0\nu}_{1/2} > 9.5\times10^{22} y at 90% C.L.. This limit corresponds to an effective Majorana neutrino mass limit in the range mββ(1.22.1)\langle m_{\beta\beta}\rangle\le(1.2-2.1) eV

    The hypothetical consent objection to anti-natalism

    Get PDF
    Abstract: A very common but untested assumption is that potential children would consent to be exposed to the harms of existence in order to experience its benefits (if it were possible for us to ask and for them to respond). And so, would-be parents might appeal to the following view: Procreation is all-things-considered permissible, as it is morally acceptable for one to knowingly harm an unconsenting patient if one has good reasons for assuming her hypothetical consent—and procreators can indeed reasonably rely on some notion of hypothetical consent. I argue that this view is in error. My argument appeals to a consent-based version of anti-natalism advanced by Seana Valentine Shiffrin. Anti-natalism is the view that it is (almost) always wrong to bring people (and perhaps all sentient beings) into existence. While, like Shiffrin, I stop short of advocating a thoroughgoing anti-natalism, I nevertheless argue that procreators cannot appeal to hypothetical consent to justify exposing children to the harms of existence. I end by suggesting a more promising route by which this justification might be achieved

    Background study of the AMoRE-pilot experiment

    Full text link
    We report a study on the background of the Advanced Molybdenum-Based Rare process Experiment (AMoRE), a search for neutrinoless double beta decay (\znbb) of 100^{100}Mo. The pilot stage of the experiment was conducted using \sim1.9 kg of \CAMOO~ crystals at the Yangyang Underground Laboratory, South Korea, from 2015 to 2018. We compared the measured β/γ\beta/\gamma energy spectra in three experimental configurations with the results of Monte Carlo simulations and identified the background sources in each configuration. We replaced several detector components and enhanced the neutron shielding to lower the background level between configurations. A limit on the half-life of 0νββ0\nu\beta\beta decay of 100^{100}Mo was found at T1/20ν3.0×1023T_{1/2}^{0\nu} \ge 3.0\times 10^{23} years at 90\% confidence level, based on the measured background and its modeling. Further reduction of the background rate in the AMoRE-I and AMoRE-II are discussed

    Radioassay of the materials for AMoRE-II experiment

    Get PDF
    The AMoRE-II experiment will search for the 0νββ decay of 100Mo nuclei using molybdate crystal scintillators, operating at milli-Kelvin (mK) temperatures, with a total of 80 kg of 100Mo. The background goal for the experiment is 10–4 counts/keV/kg/year in the region of interest around the 0νββ decay Q-value of 3,034 keV. To achieve this level, the rate of background signals arising from emissions produced by decays of radioactive impurities in the detector and shielding materials must be strictly controlled. To do this, concentrations of such impurities are measured and are controlled through materials selection and purification. In this paper, we describe the design and the construction materials used to build the AMoRE-II detector and shielding system, including active and passive shielding, the cryostat, and the detector holders and instrumentation, and we report on measurements of radioactive impurities within candidate and selected materials

    Development of MMC-based lithium molybdate cryogenic calorimeters for AMoRE-II

    Full text link
    The AMoRE collaboration searches for neutrinoless double beta decay of 100^{100}Mo using molybdate scintillating crystals via low temperature thermal calorimetric detection. The early phases of the experiment, AMoRE-pilot and AMoRE-I, have demonstrated competitive discovery potential. Presently, the AMoRE-II experiment, featuring a large detector array with about 90 kg of 100^{100}Mo isotope, is under construction.This paper discusses the baseline design and characterization of the lithium molybdate cryogenic calorimeters to be used in the AMoRE-II detector modules. The results from prototype setups that incorporate new housing structures and two different crystal masses (316 g and 517 - 521 g), operated at 10 mK temperature, show energy resolutions (FWHM) of 7.55 - 8.82 keV at the 2.615 MeV 208^{208}Tl γ\gamma line, and effective light detection of 0.79 - 0.96 keV/MeV. The simultaneous heat and light detection enables clear separation of alpha particles with a discrimination power of 12.37 - 19.50 at the energy region around 6^6Li(n, α\alpha)3^3H with Q-value = 4.785 MeV. Promising detector performances were demonstrated at temperatures as high as 30 mK, which relaxes the temperature constraints for operating the large AMoRE-II array
    corecore