355 research outputs found
Flux Modulations seen by the Muon Veto of the GERDA Experiment
The GERDA experiment at LNGS of INFN is equipped with an active muon veto.
The main part of the system is a water Cherenkov veto with 66~PMTs in the water
tank surrounding the GERDA cryostat. The muon flux recorded by this veto shows
a seasonal modulation. Two effects have been identified which are caused by
secondary muons from the CNGS neutrino beam (2.2 %) and a temperature
modulation of the atmosphere (1.4 %). A mean cosmic muon rate of /(sm) was found in good agreement with other experiments at
LNGS at a depth of 3500~meter water equivalent.Comment: 7 pages, 6 figure
Limits on uranium and thorium bulk content in GERDA Phase I detectors
Internal contaminations of U, U and Th in the bulk of
high purity germanium detectors are potential backgrounds for experiments
searching for neutrinoless double beta decay of Ge. The data from GERDA
Phase~I have been analyzed for alpha events from the decay chain of these
contaminations by looking for full decay chains and for time correlations
between successive decays in the same detector. No candidate events for a full
chain have been found. Upper limits on the activities in the range of a few
nBq/kg for Ra, Ac and Th, the long-lived daughter
nuclides of U, U and Th, respectively, have been
derived. With these upper limits a background index in the energy region of
interest from Ra and Th contamination is estimated which
satisfies the prerequisites of a future ton scale germanium double beta decay
experiment.Comment: 2 figures, 7 page
Results on decay with emission of two neutrinos or Majorons in Ge from GERDA Phase I
A search for neutrinoless decay processes accompanied with
Majoron emission has been performed using data collected during Phase I of the
GERmanium Detector Array (GERDA) experiment at the Laboratori Nazionali del
Gran Sasso of INFN (Italy). Processes with spectral indices n = 1, 2, 3, 7 were
searched for. No signals were found and lower limits of the order of 10
yr on their half-lives were derived, yielding substantially improved results
compared to previous experiments with Ge. A new result for the half-life
of the neutrino-accompanied decay of Ge with significantly
reduced uncertainties is also given, resulting in yr.Comment: 3 Figure
The Large Enriched Germanium Experiment for Neutrinoless Double Beta Decay (LEGEND)
The observation of neutrinoless double-beta decay (0)
would show that lepton number is violated, reveal that neutrinos are Majorana
particles, and provide information on neutrino mass. A discovery-capable
experiment covering the inverted ordering region, with effective Majorana
neutrino masses of 15 - 50 meV, will require a tonne-scale experiment with
excellent energy resolution and extremely low backgrounds, at the level of
0.1 count /(FWHMtyr) in the region of the signal. The
current generation Ge experiments GERDA and the MAJORANA DEMONSTRATOR
utilizing high purity Germanium detectors with an intrinsic energy resolution
of 0.12%, have achieved the lowest backgrounds by over an order of magnitude in
the 0 signal region of all 0
experiments. Building on this success, the LEGEND collaboration has been formed
to pursue a tonne-scale Ge experiment. The collaboration aims to develop
a phased 0 experimental program with discovery potential
at a half-life approaching or at years, using existing resources as
appropriate to expedite physics results.Comment: Proceedings of the MEDEX'17 meeting (Prague, May 29 - June 2, 2017
Recommended from our members
Amino acid-mediated impacts of elevated carbon dioxide and simulated root herbivory on aphids are neutralized by increased air temperatures
Changes in host plant quality, including foliar amino acid concentrations, resulting from global climate change and attack from multiple herbivores, have the potential to modify the pest status of insect herbivores. This study investigated how mechanically simulated root herbivory of lucerne (Medicago sativa) before and after aphid infestation affected the pea aphid (Acyrthosiphon pisum) under elevated temperature (eT) and carbon dioxide concentrations (eCO2). eT increased plant height and biomass, and eCO2 decreased root C:N. Foliar amino acid concentrations and aphid numbers increased in response to eCO2, but only at ambient temperatures, demonstrating the ability of eT to negate the effects of eCO2. Root damage reduced aboveground biomass, height, and root %N, and increased root %C and C:N, most probably via decreased biological nitrogen fixation. Total foliar amino acid concentrations and aphid colonization success were higher in plants with roots cut early (before aphid arrival) than those with roots cut late (after aphid arrival); however, this effect was counteracted by eT. These results demonstrate the importance of amino acid concentrations for aphids and identify individual amino acids as being potential factors underpinning aphid responses to eT, eCO2, and root damage in lucerne. Incorporating trophic complexity and multiple climatic factors into plant–herbivore studies enables greater insight into how plants and insects will interact in the future, with implications for sustainable pest control and future crop security
decay of Ge into excited states with GERDA Phase I
Two neutrino double beta decay of Ge to excited states of Se
has been studied using data from Phase I of the GERDA experiment. An array
composed of up to 14 germanium detectors including detectors that have been
isotopically enriched in Ge was deployed in liquid argon. The analysis
of various possible transitions to excited final states is based on coincidence
events between pairs of detectors where a de-excitation ray is
detected in one detector and the two electrons in the other.
No signal has been observed and an event counting profile likelihood analysis
has been used to determine Frequentist 90\,\% C.L. bounds for three
transitions: : 1.6 yr,
: 3.7 yr and : 2.3 yr. These bounds are more
than two orders of magnitude larger than those reported previously. Bayesian
90\,\% credibility bounds were extracted and used to exclude several models for
the transition
The first search for bosonic super-WIMPs with masses up to 1 MeV/c with GERDA
We present the first search for bosonic super-WIMPs as keV-scale dark matter
candidates performed with the GERDA experiment. GERDA is a neutrinoless
double-beta decay experiment which operates high-purity germanium detectors
enriched in Ge in an ultra-low background environment at the Laboratori
Nazionali del Gran Sasso (LNGS) of INFN in Italy. Searches were performed for
pseudoscalar and vector particles in the mass region from 60 keV/c to 1
MeV/c. No evidence for a dark matter signal was observed, and the most
stringent constraints on the couplings of super-WIMPs with masses above 120
keV/c have been set. As an example, at a mass of 150 keV/c the most
stringent direct limits on the dimensionless couplings of axion-like particles
and dark photons to electrons of and
at 90% credible interval,
respectively, were obtained.Comment: 6 pages, 3 figures, submitted to Physical Review Letters, added list
of authors, updated ref. [21
Limit on the Radiative Neutrinoless Double Electron Capture of Ar from GERDA Phase I
Neutrinoless double electron capture is a process that, if detected, would
give evidence of lepton number violation and the Majorana nature of neutrinos.
A search for neutrinoless double electron capture of Ar has been
performed with germanium detectors installed in liquid argon using data from
Phase I of the GERmanium Detector Array (GERDA) experiment at the Gran Sasso
Laboratory of INFN, Italy. No signal was observed and an experimental lower
limit on the half-life of the radiative neutrinoless double electron capture of
Ar was established: 3.6 10 yr at 90 % C.I.Comment: 7 pages, 3 figure
Functional and morphological results of treatment of macula-on and macula-off rhegmatogenous retinal detachment with pars plana vitrectomy and sulfur hexafluoride gas tamponade
Improvement of the energy resolution via an optimized digital signal processing in GERDA Phase I
An optimized digital shaping filter has been developed for the Gerda experiment which searches for neutrinoless double beta decay in 76Ge. The Gerda Phase I energy calibration data have been reprocessed and an average improvement of 0.3 keV in energy resolution (FWHM) corresponding to 10% at the Q value for 0 neutrino double beta decay in 76Ge is obtained. This is possible thanks to the enhanced low-frequency noise rejection of this Zero Area Cusp (ZAC) signal shaping filter.JRC.D.4 - Standards for Nuclear Safety, Security and Safeguard
- …
