834 research outputs found

    Evaluations of k-fold Euler/Zagier sums: a compendium of results for arbitrary k

    Get PDF
    Euler sums (also called Zagier sums) occur within the context of knot theory and quantum field theory. There are various conjectures related to these sums whose incompletion is a sign that both the mathematics and physics communities do not yet completely understand the field. Here, we assemble results for Euler/Zagier sums (also known as multidimensional zeta/harmonic sums) of arbitrary depth, including sign alternations. Many of our results were obtained empirically and are apparently new. By carefully compiling and examining a huge data base of high precision numerical evaluations, we can claim with some confidence that certain classes of results are exhaustive. While many proofs are lacking, we have sketched derivations of all results that have so far been proved.Comment: 19 pages, LaTe

    Determinations of rational Dedekind-zeta invariants of hyperbolic manifolds and Feynman knots and links

    Get PDF
    We identify 998 closed hyperbolic 3-manifolds whose volumes are rationally related to Dedekind zeta values, with coprime integers aa and bb giving a/bvol(M)=(D)3/2/(2π)2n4(ζK(2))/(2ζ(2))a/b vol(M)=(-D)^{3/2}/(2\pi)^{2n-4} (\zeta_K(2))/(2\zeta(2)) for a manifold M whose invariant trace field KK has a single complex place, discriminant DD, degree nn, and Dedekind zeta value ζK(2)\zeta_K(2). The largest numerator of the 998 invariants of Hodgson-Weeks manifolds is, astoundingly, a=24×23×37×691=9,408,656a=2^4\times23\times37\times691 =9,408,656; the largest denominator is merely b=9. We also study the rational invariant a/b for single-complex-place cusped manifolds, complementary to knots and links, both within and beyond the Hildebrand-Weeks census. Within the censi, we identify 152 distinct Dedekind zetas rationally related to volumes. Moreover, 91 census manifolds have volumes reducible to pairs of these zeta values. Motivated by studies of Feynman diagrams, we find a 10-component 24-crossing link in the case n=2 and D=-20. It is one of 5 alternating platonic links, the other 4 being quartic. For 8 of 10 quadratic fields distinguished by rational relations between Dedekind zeta values and volumes of Feynman orthoschemes, we find corresponding links. Feynman links with D=-39 and D=-84 are missing; we expect them to be as beautiful as the 8 drawn here. Dedekind-zeta invariants are obtained for knots from Feynman diagrams with up to 11 loops. We identify a sextic 18-crossing positive Feynman knot whose rational invariant, a/b=26, is 390 times that of the cubic 16-crossing non-alternating knot with maximal D_9 symmetry. Our results are secure, numerically, yet appear very hard to prove by analysis.Comment: 53 pages, LaTe

    Thirty-two Goldbach Variations

    Full text link
    We give thirty-two diverse proofs of a small mathematical gem--the fundamental Euler sum identity zeta(2,1)=zeta(3) =8zeta(\bar 2,1). We also discuss various generalizations for multiple harmonic (Euler) sums and some of their many connections, thereby illustrating both the wide variety of techniques fruitfully used to study such sums and the attraction of their study.Comment: v1: 34 pages AMSLaTeX. v2: 41 pages AMSLaTeX. New introductory material added and material on inequalities, Hilbert matrix and Witten zeta functions. Errors in the second section on Complex Line Integrals are corrected. To appear in International Journal of Number Theory. Title change

    Phase transition in a log-normal Markov functional model

    Full text link
    We derive the exact solution of a one-dimensional Markov functional model with log-normally distributed interest rates in discrete time. The model is shown to have two distinct limiting states, corresponding to small and asymptotically large volatilities, respectively. These volatility regimes are separated by a phase transition at some critical value of the volatility. We investigate the conditions under which this phase transition occurs, and show that it is related to the position of the zeros of an appropriately defined generating function in the complex plane, in analogy with the Lee-Yang theory of the phase transitions in condensed matter physics.Comment: 9 pages, 5 figures. v2: Added asymptotic expressions for the convexity-adjusted Libors in the small and large volatility limits. v3: Added one reference. Final version to appear in Journal of Mathematical Physic

    An elementary proof of the irrationality of Tschakaloff series

    Full text link
    We present a new proof of the irrationality of values of the series Tq(z)=n=0znqn(n1)/2T_q(z)=\sum_{n=0}^\infty z^nq^{-n(n-1)/2} in both qualitative and quantitative forms. The proof is based on a hypergeometric construction of rational approximations to Tq(z)T_q(z).Comment: 5 pages, AMSTe

    Expansion around half-integer values, binomial sums and inverse binomial sums

    Full text link
    I consider the expansion of transcendental functions in a small parameter around rational numbers. This includes in particular the expansion around half-integer values. I present algorithms which are suitable for an implementation within a symbolic computer algebra system. The method is an extension of the technique of nested sums. The algorithms allow in addition the evaluation of binomial sums, inverse binomial sums and generalizations thereof.Comment: 21 page

    Special Values of Generalized Polylogarithms

    Full text link
    We study values of generalized polylogarithms at various points and relationships among them. Polylogarithms of small weight at the points 1/2 and -1 are completely investigated. We formulate a conjecture about the structure of the linear space generated by values of generalized polylogarithms.Comment: 32 page

    Lower Bounds for Heights in Relative Galois Extensions

    Full text link
    The goal of this paper is to obtain lower bounds on the height of an algebraic number in a relative setting, extending previous work of Amoroso and Masser. Specifically, in our first theorem we obtain an effective bound for the height of an algebraic number α\alpha when the base field K\mathbb{K} is a number field and K(α)/K\mathbb{K}(\alpha)/\mathbb{K} is Galois. Our second result establishes an explicit height bound for any non-zero element α\alpha which is not a root of unity in a Galois extension F/K\mathbb{F}/\mathbb{K}, depending on the degree of K/Q\mathbb{K}/\mathbb{Q} and the number of conjugates of α\alpha which are multiplicatively independent over K\mathbb{K}. As a consequence, we obtain a height bound for such α\alpha that is independent of the multiplicative independence condition
    corecore