561 research outputs found

    Polaronic metal phases in La0.7_{0.7}Sr0.3_{0.3}MnO3_{3} uncovered by inelastic neutron and x-ray scattering

    Full text link
    Among colossal magnetoresistive manganites the prototypical ferromagnetic manganite La0.7_{0.7}Sr0.3_{0.3}MnO3_{3} has a relatively small magnetoresistance, and has been long assumed to have only weak electron-lattice coupling. Here we report that La0.7_{0.7}Sr0.3_{0.3}MnO3_{3} has strong electron-phonon coupling: Our neutron and x-ray scattering experiments show strong softening and broadening of transverse acoustic phonons on heating through the Curie temperature TC_C = 350 K. Simultaneously, we observe two phases where metallic resistivity and polarons coexist. The ferromagnetic polaronic metal phase between 200 K and TC_C is characterized by quasielastic scattering from dynamic CE-type polarons with the relatively short lifetime of τ1ps\mathbf{\tau}\approx 1\,\rm{ps}. This scattering is greatly enhanced above TC_C in the paramagnetic polaronic metal phase. Our results suggest that the strength of magnetoresistance in manganites scales with the inverse of polaron lifetime, not the strength of electron-phonon coupling

    Competing charge density waves and temperature-dependent nesting in 2H-TaSe2

    Full text link
    Multiple charge density wave (CDW) phases in 2H-TaSe2 are investigated by high-resolution synchrotron x-ray diffraction. In a narrow temperature range immediately above the commensurate CDW transition, we observe a multi-q superstructure with coexisting commensurate and incommensurate order parameters, clearly distinct from the fully incommensurate state at higher temperatures. This multi-q ordered phase, characterized by a temperature hysteresis, is found both during warming and cooling, in contrast to previous reports. In the normal state, the incommensurate superstructure reflection gives way to a broad diffuse peak that persists nearly up to room temperature. Its position provides a direct and accurate estimate of the Fermi surface nesting vector, which evolves non-monotonically and approaches the commensurate position as the temperature is increased. This behavior agrees with our recent observations of the temperature-dependent Fermi surface in the same compound [Phys. Rev. B 79, 125112 (2009)]

    Structural disorder versus chiral magnetism in Cr1/3_{1/3}NbS2_2

    Full text link
    The crystal structure of a disordered form of Cr1/3_{1/3}NbS2_2 has been characterized using diffraction and inelastic scattering of synchrotron radiation. In contrast to the previously reported symmetry (P63_322), the crystal can be described by a regular twinning of an average P63_3 structure with three disordered positions of the Cr ions. Short-range correlations of the occupational disorder result in a quite intense and structured diffuse scattering; a static nature of the disorder was unambiguously attributed by the inelastic x-ray scattering. The diffuse scattering has been modeled using a reverse Monte-Carlo algorithm assuming a disorder of the Cr sub-lattice only. The observed correlated disorder of the Cr sub-lattice reduces the temperature of the magnetic ordering from 130 K to 88 K and drastically modifies the field dependence of the magnetization as it is evidenced by the SQUID magnetometery. We conclude, that in contrast to the helicoidal spin structure assumed for P63_322 form, the compound under study is ferromagnetically ordered with a pronounced in-plane anisotropy

    A likely role for anoxygenic photosynthetic microbes in the formation of ancient stromatolites

    Get PDF
    Although cyanobacteria are the dominant primary producers in modern stromatolites and other microbialites, the oldest stromatolites pre-date geochemical evidence for oxygenic photosynthesis and cyanobacteria in the rock record. As a step towards the development of laboratory models of stromatolite growth, we tested the potential of a metabolically ancient anoxygenic photosynthetic bacterium to build stromatolites. This organism, Rhodopseudomonas palustris, stimulates the precipitation of calcite in solutions already highly saturated with respect to calcium carbonate, and greatly facilitates the incorporation of carbonate grains into proto-lamina (i.e. crusts). The appreciable stimulation of the growth of proto-lamina by a nonfilamentous anoxygenic microbe suggests that similar microbes may have played a greater role in the formation of Archean stromatolites than previously assumed

    Lattice dynamics of MgSiO3_3 perovskite (bridgmanite) studied by inelastic x-ray scattering and ab initio calculations

    Full text link
    We have determined the lattice dynamics of MgSiO3_3 perovskite (bridgmanite) by a combination of single-crystal inelastic x-ray scattering and ab initio calculations. We observe a remarkable agreement between experiment and theory, and provide accurate results for phonon dispersion relations, phonon density of states and the full elasticity tensor. The present work constitutes an important milestone to extend this kind of combined studies to extreme conditions of pressure and temperature, directly relevant for the physics and the chemistry of Earth's lower mantle

    Conformity of spin fluctuations in alkali-metal iron selenide superconductors inferred from the observation of a magnetic resonant mode in K(x)Fe(2-y)Se(2)

    Full text link
    Spin excitations stemming from the metallic phase of the ferrochalcogenide superconductor K(0.77)Fe(1.85)Se(2) (T_c=32 K) were mapped out in the ab plane by means of the time-of-flight neutron spectroscopy. We observed a magnetic resonant mode at Q_res=(1/2 1/4), whose energy and in-plane shape are almost identical to those in the related compound Rb(0.8)Fe(1.6)Se(2). This lets us infer that there is a unique underlying electronic structure of the bulk superconducting phase K(x)Fe(2)Se(2), which is universal for all alkali-metal iron selenide superconductors and stands in contrast to the doping-tunable phase diagrams of the related iron pnictides. Furthermore, the spectral weight of the resonance on the absolute scale, normalized to the volume fraction of the superconducting phase, is several times larger than in optimally doped BaFe(2-x)Co(x)As(2). We also found no evidence for any additional low-energy branches of spin excitations away from Q_res. Our results provide new input for theoretical models of the spin dynamics in iron based superconductors

    Metal-insulator transition induced by 16O -18O oxygen isotope exchange in colossal negative magnetoresistance manganites

    Get PDF
    The effect of 16O-18O isotope exchange on the electric resistivity was studied for (La(1-y)Pr(y))0.7Ca0.3MnO3 ceramic samples. Depending on y, this mixed perovskite exhibited different types of low-temperature behavior ranging from ferromagnetic metal (FM) to charge ordered (CO) antiferromagnetic insulator. It was found that at y=0.75, the substitution of 16O by 18O results in the reversible transition from a FM to a CO insulator at zero magnetic field. The applied magnetic field (H >= 2 T) transformed the sample with 18O again to the metallic state and caused the increase in the FM transition temperature Tc of the 16O sample. As a result, the isotope shift of Tc at H = 2 T was as high as 63 K. Such unique sensitivity of the system to oxygen isotope exchange, giving rise even to the metal-insulator transition, is discussed in terms of the isotope dependence of the effective electron bandwidth which shifts the balance between the CO and FM phases.Comment: 5 pages (RevTeX), 2 eps figures included, to appear in J. Appl. Phys. 83, (1998

    A eukaryote assemblage intercalated with Marinoan glacial deposits in South Australia

    Get PDF
    Video of digital X-ray tomographs (µCT) in longitudinal plane through cylinder of siltstone, maximum diameter seen (left to right when viewing movie) is 5.4m
    corecore