937 research outputs found
Neutron-Diffraction Measurements of an Antiferromagnetic Semiconducting Phase in the Vicinity of the High-Temperature Superconducting State of KFeSe
The recently discovered K-Fe-Se high temperature superconductor has caused
heated debate regarding the nature of its parent compound. Transport,
angle-resolved photoemission spectroscopy, and STM measurements have suggested
that its parent compound could be insulating, semiconducting or even metallic
[M. H. Fang, H.-D. Wang, C.-H. Dong, Z.-J. Li, C.-M. Feng, J. Chen, and H. Q.
Yuan, Europhys. Lett. 94, 27009 (2011); F. Chen et al. Phys. Rev. X 1, 021020
(2011); and W. Li et al.,Phys. Rev. Lett. 109, 057003 (2012)]. Because the
magnetic ground states associated with these different phases have not yet been
identified and the relationship between magnetism and superconductivity is not
fully understood, the real parent compound of this system remains elusive.
Here, we report neutron-diffraction experiments that reveal a semiconducting
antiferromagnetic (AFM) phase with rhombus iron vacancy order. The magnetic
order of the semiconducting phase is the same as the stripe AFM order of the
iron pnictide parent compounds. Moreover, while the root5*root5 block AFM phase
coexists with superconductivity, the stripe AFM order is suppressed by it. This
leads us to conjecture that the new semiconducting magnetic ordered phase is
the true parent phase of this superconductor.Comment: 1 table, 4 figures,5 page
Segregation during directional melting and its implications on seeded crystal growth: A theoretical analysis
Directional melting of binary systems, as encountered during seeding in melt growth, is analyzed for concurrent compositional changes at the crystal-melt interface. It is shown that steady state conditions cannot normally be reached during seeding and that the growth interface temperature at the initial stages of seeded growth is a function of backmelt conditions. The theoretical treatment is numerically applied to Hg1-xCdXTe and Ga-doped Ge
Gas Transport in Porous Media: Simulations and Experiments on Partially Densified Aerogels
The experimental density dependence of gas (argon and nitrogen) permeability
of partially densified silica aerogels in the Knudsen regime is quantitatively
accounted for by a computer model. The model simulates both the structure of
the sintered material and the random ballistic motion of a point particle
inside its voids. The same model is also able to account for the densit y
dependence of the specific pore surface as measured from nitrogen adsorption
experiments.Comment: RevTex, 11 pages + 5 postscript figures appended using "uufiles".
Published in Europhys. Lett. 29, p. 567 (1995
Time Response of Water-based Liquid Scintillator from X-ray Excitation
Water-based liquid scintillators (WbLS) present an attractive target medium
for large-scale detectors with the ability to enhance the separation of
Cherenkov and scintillation signals from a single target. This work
characterizes the scintillation properties of WbLS samples based on LAB/PPO
liquid scintillator (LS). X-ray luminescence spectra, decay profiles, and
relative light yields are measured for WbLS of varying LS concentration as well
as for pure LS with a range of PPO concentrations up to 90 g/L. The
scintillation properties of the WbLS are related to the precursor LAB/PPO:
starting from 90 g/L PPO in LAB before synthesis, the resulting WbLS have
spectroscopic properties that instead match 10 g/L PPO in LAB. This could
indicate that the concentration of active PPO in the WbLS samples depends on
their processing.Comment: 6 pages, 7 figures, 2 tables. Submitted to Materials Advances, a
journal of the Royal Society of Chemistr
Universal magnetic and structural behaviors in the iron arsenides
Commonalities among the order parameters of the ubiquitous antiferromagnetism
present in the parent compounds of the iron arsenide high temperature
superconductors are explored. Additionally, comparison is made between the well
established two-dimensional Heisenberg-Ising magnet, KNiF and iron
arsenide systems residing at a critical point whose structural and magnetic
phase transitions coincide. In particular, analysis is presented regarding two
distinct classes of phase transition behavior reflected in the development of
antiferromagnetic and structural order in the three main classes of iron
arsenide superconductors. Two distinct universality classes are mirrored in
their magnetic phase transitions which empirically are determined by the
proximity of the coupled structural and magnetic phase transitions in these
materials.Comment: 6 pages, 4 figure
Spin waves and magnetic exchange interactions in the spin ladder compound RbFeSe
We report an inelastic neutron scattering study of the spin waves of the
one-dimensional antiferromagnetic spin ladder compound RbFeSe. The
results reveal that the products, 's, of the spin and the magnetic
exchange interactions 's along the antiferromagnetic (leg) direction and the
ferromagnetic (rung) direction are comparable with those for the stripe ordered
phase of the parent compounds of the iron-based superconductors. The
universality of the 's implies nearly universal spin wave dynamics and the
irrelevance of the fermiology for the existence of the stripe antiferromagnetic
order among various Fe-based materials.Comment: 6 pages, 4 figure
Bandwidth and Electron Correlation-Tuned Superconductivity in RbFe(SeS)
We present a systematic angle-resolved photoemission spectroscopy study of
the substitution-dependence of the electronic structure of
RbFe(SeS) (z = 0, 0.5, 1), where
superconductivity is continuously suppressed into a metallic phase. Going from
the non-superconducting RbFe(SeS) to
superconducting RbFeSe, we observe little change of the Fermi
surface topology, but a reduction of the overall bandwidth by a factor of 2 as
well as an increase of the orbital-dependent renormalization in the
orbital. Hence for these heavily electron-doped iron chalcogenides, we have
identified electron correlation as explicitly manifested in the quasiparticle
bandwidth to be the important tuning parameter for superconductivity, and that
moderate correlation is essential to achieving high
Theory of Adiabatic fluctuations : third-order noise
We consider the response of a dynamical system driven by external adiabatic
fluctuations. Based on the `adiabatic following approximation' we have made a
systematic separation of time-scales to carry out an expansion in , where is the strength of fluctuations and is the
damping rate. We show that probability distribution functions obey the
differential equations of motion which contain third order terms (beyond the
usual Fokker-Planck terms) leading to non-Gaussian noise. The problem of
adiabatic fluctuations in velocity space which is the counterpart of Brownian
motion for fast fluctuations, has been solved exactly. The characteristic
function and the associated probability distribution function are shown to be
of stable form. The linear dissipation leads to a steady state which is stable
and the variances and higher moments are shown to be finite.Comment: Plain Latex, no figures, 28 pages; to appear in J. Phys.
- …
