79 research outputs found

    Listeria monocytogenes in Milk Products

    Get PDF
    peer-reviewedMilk and milk products are frequently identified as vectors for transmission of Listeria monocytogenes. Milk can be contaminated at farm level either by indirect external contamination from the farm environment or less frequently by direct contamination of the milk from infection in the animal. Pasteurisation of milk will kill L. monocytogenes, but post-pasteurisation contamination, consumption of unpasteurised milk and manufacture of unpasteurised milk products can lead to milk being the cause of outbreaks of listeriosis. Therefore, there is a concern that L. monocytogenes in milk could lead to a public health risk. To protect against this risk, there is a need for awareness surrounding the issues, hygienic practices to reduce the risk and adequate sampling and analysis to verify that the risk is controlled. This review will highlight the issues surrounding L. monocytogenes in milk and milk products, including possible control measures. It will therefore create awareness about L. monocytogenes, contributing to protection of public health

    Persistence of viral reservoirs in multiple tissues after antiretroviral therapy suppression in a macaque RT-SHIV model

    Get PDF
    Although antiretroviral therapy (ART) can suppress HIV-1 replication sufficiently to eliminate measurable plasma viremia, infected cells remain and ensure viral recrudescence after discontinuation of ART. We used a macaque model of HIV-1/AIDS to evaluate the location of infected cells during ART. Twelve macaques were infected with RT-SHIVmne, a SIV containing HIV-1 reverse transcriptase, conferring sensitivity to non-nucleoside reverse transcriptase inhibitors (NNRTIs). Ten to fourteen weeks post-infection, 6 animals were treated with 3 or 4 antiretroviral drugs for 17-20 weeks; 6 control animals remained untreated. Viral DNA (vDNA) and RNA (vRNA) were measured in peripheral blood mononuclear cells (PBMC) and at necropsy in multiple tissues by quantitative PCR and RT-PCR. The majority of virally infected cells were located in lymphoid tissues with variable levels in the gastrointestinal tract of both treated and untreated animals. Tissue viral DNA levels correlated with week 1 plasma viremia, suggesting that tissues that harbor proviral DNA are established within the first week of infection. PBMC vDNA levels did not correlate with plasma viremia or tissue levels of vDNA. vRNA levels were high in lymphoid and gastrointestinal tissues of the untreated animals; animals on ART had little vRNA expressed in tissues and virus could not be cultured from lymph node resting CD4+ cells after 17-20 weeks on ART, indicating little or no ongoing viral replication. Strategies for eradication of HIV-1 will need to target residual virus in ART suppressed individuals, which may not be accurately reflected by frequencies of infected cells in blood. © 2013 Kline et al

    Surgical anatomy of the hippocampus

    Get PDF
    AbstractBackground and purposeHippocampectomy is an efficient procedure for medial temporal lobe epilepsy. Nevertheless, hippocampus anatomy is complex, due to a deep location, and a complex structure. In this didactic paper, we propose a description of the hippocampus that should help neurosurgeons to feel at ease in this region.MethodsEmbryological data was obtained from the literature, whereas adult anatomy was described after dissecting 8 human hemispheres (with and without vascular injection) and slicing 3 additional ones.ResultsThe hippocampus is C-shaped and made of 2 rolled-up laminae, the cornu Ammonis and the gyrus dentatus. Its ventricular aspect is covered by the choroid plexus of the inferior horn excepted at the head level. Its cisternal aspect faces the mesencephalon from which it is limited by the transverse fissure. Its rostral part (head) curves dorso-caudally to form the uncus, located at the medial aspect of the temporal lobe. Its caudal part (tail) splits into the fimbria and the gyrus fasciolaris that respectively run ventral and dorsal to the corpus callosum, to become the fornix and indusium griseum.ConclusionConsequences of this complex anatomy are presented, and the authors stress the need for a subpial resection. Important landmarks are provided to avoid lesions of the surrounding structures
    corecore