105 research outputs found

    JAK-STAT and AKT pathway-coupled genes in erythroid progenitor cells through ontogeny

    Get PDF
    Background: It has been reported that the phosphatidylinositol 3-kinase (PI3K)-AKT signaling pathway regulates erythropoietin (EPO)-induced survival, proliferation, and maturation of early erythroid progenitors. Erythroid cell proliferation and survival have also been related to activation of the JAK-STAT pathway. The goal of this study was to observe the function of EPO activation of JAK-STAT and PI3K/AKT pathways in the development of erythroid progenitors from hematopoietic CD34(+) progenitor cells, as well as to distinguish early EPO target genes in human erythroid progenitors during ontogeny. Methods: Hematopoietic CD34(+) progenitor cells, isolated from fetal and adult hematopoietic tissues, were differentiated into erythroid progenitor cells. We have used microarray analysis to examine JAK-STAT and PI3K/AKT related genes, as well as broad gene expression modulation in these human erythroid progenitor cells. Results: In microarray studies, a total of 1755 genes were expressed in fetal liver, 3844 in cord blood, 1770 in adult bone marrow, and 1325 genes in peripheral blood-derived erythroid progenitor cells. The erythroid progenitor cells shared 1011 common genes. Using the Ingenuity Pathways Analysis software, we evaluated the network pathways of genes linked to hematological system development, cellular growth and proliferation. The KITLG, EPO, GATA1, PIM1 and STAT3 genes represent the major connection points in the hematological system development linked genes. Some JAK-STAT signaling pathway-linked genes were steadily upregulated throughout ontogeny (PIM1, SOCS2, MYC, PTPN11), while others were downregulated (PTPN6, PIAS, SPRED2). In addition, some JAK-STAT pathway related genes are differentially expressed only in some stages of ontogeny (STATs, GRB2, CREBB). Beside the continuously upregulated (AKT1, PPP2CA, CHUK, NFKB1) and downregulated (FOXO1, PDPK1, PIK3CG) genes in the PI3K-AKT signaling pathway, we also observed intermittently regulated gene expression (NFKBIA, YWHAH). Conclusions: This broad overview of gene expression in erythropoiesis revealed transcription factors differentially expressed in some stages of ontogenesis. Finally, our results show that EPO-mediated proliferation and survival of erythroid progenitors occurs mainly through modulation of JAK-STAT pathway associated STATs, GRB2 and PIK3 genes, as well as AKT pathway-coupled NFKBIA and YWHAH genes

    Apoptosis-Related Gene Expression Profiling in Hematopoietic Cell Fractions of MDS Patients

    Get PDF
    Contains fulltext : 168172.pdf (publisher's version ) (Open Access)Although the vast majority of patients with a myelodysplastic syndrome (MDS) suffer from cytopenias, the bone marrow is usually normocellular or hypercellular. Apoptosis of hematopoietic cells in the bone marrow has been implicated in this phenomenon. However, in MDS it remains only partially elucidated which genes are involved in this process and which hematopoietic cells are mainly affected. We employed sensitive real-time PCR technology to study 93 apoptosis-related genes and gene families in sorted immature CD34+ and the differentiating erythroid (CD71+) and monomyeloid (CD13/33+) bone marrow cells. Unsupervised cluster analysis of the expression signature readily distinguished the different cellular bone marrow fractions (CD34+, CD71+ and CD13/33+) from each other, but did not discriminate patients from healthy controls. When individual genes were regarded, several were found to be differentially expressed between patients and controls. Particularly, strong over-expression of BIK (BCL2-interacting killer) was observed in erythroid progenitor cells of low- and high-risk MDS patients (both p = 0.001) and TNFRSF4 (tumor necrosis factor receptor superfamily 4) was down-regulated in immature hematopoietic cells (p = 0.0023) of low-risk MDS patients compared to healthy bone marrow

    Negative Autoregulation by Fas Stabilizes Adult Erythropoiesis and Accelerates Its Stress Response

    Get PDF
    Erythropoiesis maintains a stable hematocrit and tissue oxygenation in the basal state, while mounting a stress response that accelerates red cell production in anemia, blood loss or high altitude. Thus, tissue hypoxia increases secretion of the hormone erythropoietin (Epo), stimulating an increase in erythroid progenitors and erythropoietic rate. Several cell divisions must elapse, however, before Epo-responsive progenitors mature into red cells. This inherent delay is expected to reduce the stability of erythropoiesis and to slow its response to stress. Here we identify a mechanism that helps to offset these effects. We recently showed that splenic early erythroblasts, ‘EryA’, negatively regulate their own survival by co-expressing the death receptor Fas, and its ligand, FasL. Here we studied mice mutant for either Fas or FasL, bred onto an immune-deficient background, in order to avoid an autoimmune syndrome associated with Fas deficiency. Mutant mice had a higher hematocrit, lower serum Epo, and an increased number of splenic erythroid progenitors, suggesting that Fas negatively regulates erythropoiesis at the level of the whole animal. In addition, Fas-mediated autoregulation stabilizes the size of the splenic early erythroblast pool, since mutant mice had a significantly more variable EryA pool than matched control mice. Unexpectedly, in spite of the loss of a negative regulator, the expansion of EryA and ProE progenitors in response to high Epo in vivo, as well as the increase in erythropoietic rate in mice injected with Epo or placed in a hypoxic environment, lagged significantly in the mutant mice. This suggests that Fas-mediated autoregulation accelerates the erythropoietic response to stress. Therefore, Fas-mediated negative autoregulation within splenic erythropoietic tissue optimizes key dynamic features in the operation of the erythropoietic network as a whole, helping to maintain erythroid homeostasis in the basal state, while accelerating the stress response

    Critical role for PI 3-kinase in the control of erythropoietin-induced erythroid progenitor proliferation

    Full text link

    Neutropenia febril

    Full text link

    Neutropenie febbrili

    Full text link

    Mieloma múltiple

    Full text link
    corecore