1,746 research outputs found

    VennDiagramWeb: a web application for the generation of highly customizable Venn and Euler diagrams.

    Get PDF
    BackgroundVisualization of data generated by high-throughput, high-dimensionality experiments is rapidly becoming a rate-limiting step in computational biology. There is an ongoing need to quickly develop high-quality visualizations that can be easily customized or incorporated into automated pipelines. This often requires an interface for manual plot modification, rapid cycles of tweaking visualization parameters, and the generation of graphics code. To facilitate this process for the generation of highly-customizable, high-resolution Venn and Euler diagrams, we introduce VennDiagramWeb: a web application for the widely used VennDiagram R package. VennDiagramWeb is hosted at http://venndiagram.res.oicr.on.ca/ .ResultsVennDiagramWeb allows real-time modification of Venn and Euler diagrams, with parameter setting through a web interface and immediate visualization of results. It allows customization of essentially all aspects of figures, but also supports integration into computational pipelines via download of R code. Users can upload data and download figures in a range of formats, and there is exhaustive support documentation.ConclusionsVennDiagramWeb allows the easy creation of Venn and Euler diagrams for computational biologists, and indeed many other fields. Its ability to support real-time graphics changes that are linked to downloadable code that can be integrated into automated pipelines will greatly facilitate the improved visualization of complex datasets. For application support please contact [email protected]

    Multidimensional reconciliation for continuous-variable quantum key distribution

    Get PDF
    We propose a method for extracting an errorless secret key in a continuous-variable quantum key distribution protocol, which is based on Gaussian modulation of coherent states and homodyne detection. The crucial feature is an eight-dimensional reconciliation method, based on the algebraic properties of octonions. Since the protocol does not use any postselection, it can be proven secure against arbitrary collective attacks, by using well-established theorems on the optimality of Gaussian attacks. By using this new coding scheme with an appropriate signal to noise ratio, the distance for secure continuous-variable quantum key distribution can be significantly extended.Comment: 8 pages, 3 figure

    Kronos: a workflow assembler for genome analytics and informatics.

    Get PDF
    BackgroundThe field of next-generation sequencing informatics has matured to a point where algorithmic advances in sequence alignment and individual feature detection methods have stabilized. Practical and robust implementation of complex analytical workflows (where such tools are structured into "best practices" for automated analysis of next-generation sequencing datasets) still requires significant programming investment and expertise.ResultsWe present Kronos, a software platform for facilitating the development and execution of modular, auditable, and distributable bioinformatics workflows. Kronos obviates the need for explicit coding of workflows by compiling a text configuration file into executable Python applications. Making analysis modules would still require programming. The framework of each workflow includes a run manager to execute the encoded workflows locally (or on a cluster or cloud), parallelize tasks, and log all runtime events. The resulting workflows are highly modular and configurable by construction, facilitating flexible and extensible meta-applications that can be modified easily through configuration file editing. The workflows are fully encoded for ease of distribution and can be instantiated on external systems, a step toward reproducible research and comparative analyses. We introduce a framework for building Kronos components that function as shareable, modular nodes in Kronos workflows.ConclusionsThe Kronos platform provides a standard framework for developers to implement custom tools, reuse existing tools, and contribute to the community at large. Kronos is shipped with both Docker and Amazon Web Services Machine Images. It is free, open source, and available through the Python Package Index and at https://github.com/jtaghiyar/kronos

    A discrete cluster of urinary biomarkers discriminates between active systemic lupus erythematosus patients with and without glomerulonephritis.

    Get PDF
    BackgroundManagement of lupus nephritis (LN) would be greatly aided by the discovery of biomarkers that accurately reflect changes in disease activity. Here, we used a proteomics approach to identify potential urinary biomarkers associated with LN.MethodsUrine was obtained from 60 LN patients with paired renal biopsies, 25 active non-LN SLE patients, and 24 healthy controls. Using Luminex, 128 analytes were quantified and normalized to urinary creatinine levels. Data were analyzed by linear modeling and non-parametric statistics, with corrections for multiple comparisons. A second cohort of 33 active LN, 16 active non-LN, and 30 remission LN SLE patients was used to validate the results.ResultsForty-four analytes were identified that were significantly increased in active LN as compared to active non-LN. This included a number of unique proteins (e.g., TIMP-1, PAI-1, PF4, vWF, and IL-15) as well as known candidate LN biomarkers (e.g., adiponectin, sVCAM-1, and IL-6), that differed markedly (>4-fold) between active LN and non-LN, all of which were confirmed in the validation cohort and normalized in remission LN patients. These proteins demonstrated an enhanced ability to discriminate between active LN and non-LN patients over several previously reported biomarkers. Ten proteins were found to significantly correlate with the activity score on renal biopsy, eight of which strongly discriminated between active proliferative and non-proliferative/chronic renal lesions.ConclusionsA number of promising urinary biomarkers that correlate with the presence of active renal disease and/or renal biopsy changes were identified and appear to outperform many of the existing proposed biomarkers

    Exploiting the noise: improving biomarkers with ensembles of data analysis methodologies.

    Get PDF
    BackgroundThe advent of personalized medicine requires robust, reproducible biomarkers that indicate which treatment will maximize therapeutic benefit while minimizing side effects and costs. Numerous molecular signatures have been developed over the past decade to fill this need, but their validation and up-take into clinical settings has been poor. Here, we investigate the technical reasons underlying reported failures in biomarker validation for non-small cell lung cancer (NSCLC).MethodsWe evaluated two published prognostic multi-gene biomarkers for NSCLC in an independent 442-patient dataset. We then systematically assessed how technical factors influenced validation success.ResultsBoth biomarkers validated successfully (biomarker #1: hazard ratio (HR) 1.63, 95% confidence interval (CI) 1.21 to 2.19, P = 0.001; biomarker #2: HR 1.42, 95% CI 1.03 to 1.96, P = 0.030). Further, despite being underpowered for stage-specific analyses, both biomarkers successfully stratified stage II patients and biomarker #1 also stratified stage IB patients. We then systematically evaluated reasons for reported validation failures and find they can be directly attributed to technical challenges in data analysis. By examining 24 separate pre-processing techniques we show that minor alterations in pre-processing can change a successful prognostic biomarker (HR 1.85, 95% CI 1.37 to 2.50, P < 0.001) into one indistinguishable from random chance (HR 1.15, 95% CI 0.86 to 1.54, P = 0.348). Finally, we develop a new method, based on ensembles of analysis methodologies, to exploit this technical variability to improve biomarker robustness and to provide an independent confidence metric.ConclusionsBiomarkers comprise a fundamental component of personalized medicine. We first validated two NSCLC prognostic biomarkers in an independent patient cohort. Power analyses demonstrate that even this large, 442-patient cohort is under-powered for stage-specific analyses. We then use these results to discover an unexpected sensitivity of validation to subtle data analysis decisions. Finally, we develop a novel algorithmic approach to exploit this sensitivity to improve biomarker robustness

    Transcriptional profiling of rat hypothalamus response to 2,3,7,8-tetrachlorodibenzo-p-dioxin

    Get PDF
    In some mammals, halogenated aromatic hydrocarbon (HAH) exposure causes wasting syndrome, defined as significant weight loss associated with lethal outcomes. The most potent HAH in causing wasting is 2,3,7,8-tetrachlorodibenzo-rho-dioxin (TCDD), which exerts its toxic effects through the aryl hydrocarbon receptor (AHR). Since TCDD toxicity is thought to predominantly arise from dysregulation of AHR-transcribed genes, it was hypothesized that wasting syndrome is a result of to TCDD-induced dysregulation of genes involved in regulation of food-intake. As the hypothalamus is the central nervous systems' regulatory center for food-intake and energy balance. Therefore, mRNA abundances in hypothalamic tissue from two rat strains with widely differing sensitivities to TCDD-induced wasting syndrome: TCDD-sensitive Long-Evans rats and TCDD-resistant Han/Wistar rats, 23 h after exposure to TCDD (100 mu g/kg) or corn oil vehicle. TCDD exposure caused minimal transcriptional dysregulation in the hypothalamus, with only 6 genes significantly altered in Long-Evans rats and 15 genes in Han/Wistar rats. Two of the most dysregulated genes were Cyp1a1 and Nqo1, which are induced by TCDD across a wide range of tissues and are considered sensitive markers of TCDD exposure. The minimal response of the hypothalamic transcriptome to a lethal dose of TCDD at an early time-point suggests that the hypothalamus is not the predominant site of initial events leading to hypophagia and associated wasting. TCDD may affect feeding behaviour via events upstream or downstream of the hypothalamus, and further work is required to evaluate this at the level of individual hypothalamic nuclei and subregions. (C) 2014 The Authors. Published by Elsevier Ireland Ltd.Peer reviewe
    corecore