1,309 research outputs found
Trajectory-based interpretation of Young's experiment, the Arago-Fresnel laws and the Poisson-Arago spot for photons and massive particles
We present a trajectory based interpretation for Young's experiment, the
Arago-Fresnel laws and the Poisson-Arago spot. This approach is based on the
equation of the trajectory associated with the quantum probability current
density in the case of massive particles, and the Poynting vector for the
electromagnetic field in the case of photons. Both the form and properties of
the evaluated photon trajectories are in good agreement with the averaged
trajectories of single photons observed recently in Young's experiment by
Steinberg's group at the University of Toronto. In the case of the
Arago-Fresnel laws for polarized light, the trajectory interpretation presented
here differs from those interpretations based on the concept of "which-way" (or
"which-slit") information and quantum erasure. More specifically, the
observer's information about the slit that photons went through is not relevant
to the existence of interference; what is relevant is the form of the
electromagnetic energy density and its evolution, which will model consequently
the distribution of trajectories and their topology. Finally, we also show that
the distributions of end points of a large number of evaluated photon
trajectories are in agreement with the distributions measured at the screen
behind a circular disc, clearly giving rise to the Poisson-Arago spot.Comment: 8 pages, 5 figure
Evolution of the wave function of an atom hit by a photon in a three-grating interferometer
In 1995, Chapman et al. (1995 Phys. Rev. Lett. 75 2783) showed experimentally
that the interference contrast in a three-grating atom interferometer does not
vanish under the presence of scattering events with photons, as required by the
complementarity principle. In this work we provide an analytical study of this
experiment, determining the evolution of the atom wave function along the
three-grating Mach-Zehnder interferometer under the assumption that the atom is
hit by a photon after passing through the first grating. The consideration of a
transverse wave function in momentum representation is essential in this study.
As is shown, the number of atoms transmitted through the third grating is given
by a simple periodic function of the lateral shift along this grating, both in
the absence and in the presence of photon scattering. Moreover, the relative
contrast (laser on/laser off) is shown to be a simple analytical function of
the ratio d_p/\lambda_i, where d_p is the distance between atomic paths at the
scattering locus and \lambda_i the scattered photon wavelength. We argue that
this dependence, being in agreement with experimental results, can be regarded
to show compatibility of the wave and corpuscle properties of atoms.Comment: 8 pages, 4 figure
Should particle trajectories comply with the transverse momentum distribution?
The momentum distributions associated with both the wave function of a
particle behind a grating and the corresponding Bohmian trajectories are
investigated and compared. Near the grating, it is observed that the former
does not depend on the distance from the grating, while the latter changes with
this distance. However, as one moves further apart from the grating, in the far
field, both distributions become identical.Comment: 10 pages, 7 figure
Brain Network Connectivity During Language Comprehension: Interacting Linguistic and Perceptual Subsystems.
The dynamic neural processes underlying spoken language comprehension require the real-time integration of general perceptual and specialized linguistic information. We recorded combined electro- and magnetoencephalographic measurements of participants listening to spoken words varying in perceptual and linguistic complexity. Combinatorial linguistic complexity processing was consistently localized to left perisylvian cortices, whereas competition-based perceptual complexity triggered distributed activity over both hemispheres. Functional connectivity showed that linguistically complex words engaged a distributed network of oscillations in the gamma band (20-60 Hz), which only partially overlapped with the network supporting perceptual analysis. Both processes enhanced cross-talk between left temporal regions and bilateral pars orbitalis (BA47). The left-lateralized synchrony between temporal regions and pars opercularis (BA44) was specific to the linguistically complex words, suggesting a specific role of left frontotemporal cross-cortical interactions in morphosyntactic computations. Synchronizations in oscillatory dynamics reveal the transient coupling of functional networks that support specific computational processes in language comprehension.This work was supported by an EPSRC grant to W.M.-W. (EP/F030061/1), an ERC Advanced Grant (Neurolex) to W.M.-W., and by MRC Cognition and Brain Sciences Unit (CBU) funding to
W.M.-W. (U.1055.04.002.00001.01). Computing resources were provided by the MRC-CBU. Funding to pay the Open Access publication charges for this article was provided by the Advanced Investigator Grant (Neurolex) to W.D.M.-W.This is the final published version which appears at http://dx.doi.org/10.1093/cercor/bhu28
Formation and Interaction of Membrane Tubes
We show that the formation of membrane tubes (or membrane tethers), which is
a crucial step in many biological processes, is highly non-trivial and involves
first order shape transitions. The force exerted by an emerging tube is a
non-monotonic function of its length. We point out that tubes attract each
other, which eventually leads to their coalescence. We also show that detached
tubes behave like semiflexible filaments with a rather short persistence
length. We suggest that these properties play an important role in the
formation and structure of tubular organelles.Comment: 4 pages, 3 figure
Reactive Dye Degradation by AOPs; Development of a Kinetic Model for UV/H2O2 Process
An application of UV/H2O2 process for the treatment of model wastewater containing organic reactive azo dye C.I. Reactive Blue 137 (RB137) was studied. The efficiency of applied process for decolorization and mineralization of RB137 model solution is discussed. The influence of operating process parameters, initial pH and initial concentration of H2O2, as well as initial dye mass concentration on process effectiveness was investigated.
Both direct UV photolysis and OH radical attack were assumed as RB137 degradation mechanisms and a detailed kinetic model for dye degradation by UV/H2O2 process was proposed. The predicted system behavior was compared with experimentally obtained results of decolorization and mineralization of RB137 wastewater. A sensitivity analysis for the evaluation of importance of each reaction used in the model development was also included
Grammatical analysis as a distributed neurobiological function.
This is the final version of the article. It first appeared from [publisher] via http://dx.doi.org/10.1002/hbm.22696Language processing engages large-scale functional networks in both hemispheres. Although it is widely accepted that left perisylvian regions have a key role in supporting complex grammatical computations, patient data suggest that some aspects of grammatical processing could be supported bilaterally. We investigated the distribution and the nature of grammatical computations across language processing networks by comparing two types of combinatorial grammatical sequences--inflectionally complex words and minimal phrases--and contrasting them with grammatically simple words. Novel multivariate analyses revealed that they engage a coalition of separable subsystems: inflected forms triggered left-lateralized activation, dissociable into dorsal processes supporting morphophonological parsing and ventral, lexically driven morphosyntactic processes. In contrast, simple phrases activated a consistently bilateral pattern of temporal regions, overlapping with inflectional activations in L middle temporal gyrus. These data confirm the role of the left-lateralized frontotemporal network in supporting complex grammatical computations. Critically, they also point to the capacity of bilateral temporal regions to support simple, linear grammatical computations. This is consistent with a dual neurobiological framework where phylogenetically older bihemispheric systems form part of the network that supports language function in the modern human, and where significant capacities for language comprehension remain intact even following severe left hemisphere damage.Computing resources were provided by the MRC-CBU. Li
Su was partly supported by the Cambridge Dementia
Biomedical Research Unit
Accumulation of driver and passenger mutations during tumor progression
Major efforts to sequence cancer genomes are now occurring throughout the
world. Though the emerging data from these studies are illuminating, their
reconciliation with epidemiologic and clinical observations poses a major
challenge. In the current study, we provide a novel mathematical model that
begins to address this challenge. We model tumors as a discrete time branching
process that starts with a single driver mutation and proceeds as each new
driver mutation leads to a slightly increased rate of clonal expansion. Using
the model, we observe tremendous variation in the rate of tumor development -
providing an understanding of the heterogeneity in tumor sizes and development
times that have been observed by epidemiologists and clinicians. Furthermore,
the model provides a simple formula for the number of driver mutations as a
function of the total number of mutations in the tumor. Finally, when applied
to recent experimental data, the model allows us to calculate, for the first
time, the actual selective advantage provided by typical somatic mutations in
human tumors in situ. This selective advantage is surprisingly small, 0.005 +-
0.0005, and has major implications for experimental cancer research
Exact solution of a two-type branching process: Clone size distribution in cell division kinetics
We study a two-type branching process which provides excellent description of
experimental data on cell dynamics in skin tissue (Clayton et al., 2007). The
model involves only a single type of progenitor cell, and does not require
support from a self-renewed population of stem cells. The progenitor cells
divide and may differentiate into post-mitotic cells. We derive an exact
solution of this model in terms of generating functions for the total number of
cells, and for the number of cells of different types. We also deduce large
time asymptotic behaviors drawing on our exact results, and on an independent
diffusion approximation.Comment: 16 page
Stresses in lipid membranes
The stresses in a closed lipid membrane described by the Helfrich
hamiltonian, quadratic in the extrinsic curvature, are identified using
Noether's theorem. Three equations describe the conservation of the stress
tensor: the normal projection is identified as the shape equation describing
equilibrium configurations; the tangential projections are consistency
conditions on the stresses which capture the fluid character of such membranes.
The corresponding torque tensor is also identified. The use of the stress
tensor as a basis for perturbation theory is discussed. The conservation laws
are cast in terms of the forces and torques on closed curves. As an
application, the first integral of the shape equation for axially symmetric
configurations is derived by examining the forces which are balanced along
circles of constant latitude.Comment: 16 pages, introduction rewritten, other minor changes, new references
added, version to appear in Journal of Physics
- …
